104 使用Cohere Rerank优化LlamaIndex查询

使用Cohere Rerank优化LlamaIndex查询

欢迎来到这篇技术博客!今天我们将探讨如何使用Cohere Rerank优化LlamaIndex的查询结果。如果你在Colab上打开这个Notebook,你可能需要安装LlamaIndex。

%pip install llama-index > /dev/null
%pip install llama-index-postprocessor-cohere-rerank > /dev/null

下载数据

首先,我们需要下载一些示例数据。这里我们使用Paul Graham的散文作为示例。

!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'

加载文档并构建索引

接下来,我们加载文档并构建向量索引。

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

# 加载文档
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()

# 构建索引
index = VectorStoreIndex.from_documents(documents=documents)

使用Cohere Rerank优化查询结果

我们将使用Cohere Rerank来优化查询结果。首先,我们需要设置Cohere API密钥。

import os
from llama_index.postprocessor.cohere_rerank import CohereRerank

api_key = os.environ["COHERE_API_KEY"]
cohere_rerank = CohereRerank(api_key=api_key, top_n=2)

然后,我们创建一个查询引擎,并使用Cohere Rerank作为节点后处理器。

query_engine = index.as_query_engine(
    similarity_top_k=10,
    node_postprocessors=[cohere_rerank],
)

response = query_engine.query(
    "What did Sam Altman do in this essay?",
)

from llama_index.core.response.pprint_utils import pprint_response
pprint_response(response, show_source=True)

直接检索最相似的节点

作为对比,我们也可以直接检索最相似的节点,而不使用Cohere Rerank。

query_engine = index.as_query_engine(
    similarity_top_k=2,
)

response = query_engine.query(
    "What did Sam Altman do in this essay?",
)

pprint_response(response, show_source=True)

结果对比

使用Cohere Rerank优化后的查询结果更加相关和准确。以下是优化后的查询结果:

Final Response: Sam Altman was asked if he wanted to be the president
of Y Combinator. Initially, he declined as he wanted to start a
startup focused on making nuclear reactors. However, after persistent
persuasion, he eventually agreed to become the president of Y
Combinator starting with the winter 2014 batch.
______________________________________________________________________
Source Node 1/2
Node ID: 7ecf4eb2-215d-45e4-ba08-44d9219c7fa6
Similarity: 0.93033177
Text: When I was dealing with some urgent problem during YC, there was
about a 60% chance it had to do with HN, and a 40% chance it had do
with everything else combined. [17]  As well as HN, I wrote all of
YC's internal software in Arc. But while I continued to work a good
deal in Arc, I gradually stopped working on Arc, partly because I
didn't have t...
______________________________________________________________________
Source Node 2/2
Node ID: 88be17e9-e0a0-49e1-9ff8-f2b7aa7493ed
Similarity: 0.86269903
Text: Up till that point YC had been controlled by the original LLC we
four had started. But we wanted YC to last for a long time, and to do
that it couldn't be controlled by the founders. So if Sam said yes,
we'd let him reorganize YC. Robert and I would retire, and Jessica and
Trevor would become ordinary partners.  When we asked Sam if he wanted
to...

而直接检索最相似节点的结果可能不太相关,甚至可能出现幻觉(hallucination)。

总结

通过使用Cohere Rerank,我们可以在查询时进一步优化结果的相关性和准确性。这种方法特别适用于需要高精度查询结果的场景。希望这篇博客能帮助你更好地理解和应用Cohere Rerank。

如果你有任何问题或需要进一步的帮助,请随时在评论区留言。感谢阅读!

Cohere GPT是由Cohere Technologies开发的一种基于GPT模型的自然语言处理工具。它是一个强大的语言生成模型,可以用于各种任务,如文本生成、对话系统、代码自动补全等。 Cohere GPT的优势在于其训练数据和模型权重的质量。Cohere Technologies使用大规模的数据集和强大的计算资源来训练模型,以提供更准确和流畅的生成结果。此外,Cohere GPT还具有较低的推理成本,可以在实时应用中快速生成响应。 以下是一个使用Cohere GPT生成文本的示例: ```python import torch from transformers import GPTNeoForCausalLM, GPT2Tokenizer # 加载预训练的Cohere GPT模型和分词器 model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") # 输入文本 input_text = "Once upon a time" # 将输入文本编码为模型可接受的输入张量 input_ids = tokenizer.encode(input_text, return_tensors="pt") # 使用Cohere GPT生成下一个词 output = model.generate(input_ids, max_length=50, num_return_sequences=1) # 解码生成的文本 generated_text = tokenizer.decode(output[0], skip_special_tokens=True) # 打印生成的文本 print(generated_text) ``` 这段代码使用Cohere GPT的预训练模型和分词器,将输入文本编码为模型可接受的输入张量,然后使用模型生成下一个词,并将生成的文本解码为可读的格式。你可以根据需要调整`max_length`参数来控制生成文本的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值