学习笔记——支持向量机(SVM)

凸优化问题

  1. 无约束优化问题
    m i n f ( x ) min f(x) minf(x)
    费马(Fermat)定理,直接 f ′ ( x ) = 0 f^{'}(x)=0 f(x)=0求解

  2. 带等式约束的优化问题
    m i n f ( x ) minf(x) minf(x)
    s . t . h i ( x ) = 0 , i = 1 , 2 , ⋅ ⋅ ⋅ , n s.t. h_i(x)=0 , i=1,2,···,n s.t.hi(x)=0,i=1,2,,n
    拉格朗日(Largrange)乘子法,构造:
    L ( x , α i ) = f ( x ) + ∑ i = 1 n α i h i ( x ) \displaystyle L(x, \alpha_i) = f(x) +\sum_{i=1}^{n} \alpha_ih_i(x) L(x,αi)=f(x)+i=1nαihi(x)
    ∂ L ( x , α i ) ∂ x = 0 , ∂ L ( x , α i ) ∂ α i = 0 , i = 1 , 2 , ⋅ ⋅ ⋅ , n \frac{\partial L(x, \alpha_i)}{\partial x}=0 ,\frac{\partial L(x, \alpha_i)}{\partial \alpha_i}=0, i=1,2,···,n xL(x,αi)=0,αiL(x,αi)=0,i=1,2,,n

  3. 带不等式约束的优化问题
    m i n f ( x ) minf(x) minf(x)
    s . t . h i ( x ) = 0 , i = 1 , 2 , ⋅ ⋅ ⋅ , n ; s.t. h_i(x)=0,i=1,2,···,n; s.t.hi(x)=0,i=1,2,,n;
    g j ( x ) ≤ 0 , j = 1 , 2 , ⋅ ⋅ ⋅ , m \quad g_j(x)\leq 0,j=1,2,···,m gj(x)0j=1,2,,m
    构造Largrange函数:
    L ( x , α i ) = f ( x ) + ∑ i = 1 n α i h i ( x ) + ∑ j = 1 m β j g j ( x ) \displaystyle L(x, \alpha_i) = f(x) + \sum_{i=1}^{n}\alpha_ih_i(x)+ \sum_{j=1}^{m}\beta_jg_j(x) L(x,αi)=f(x)+i=1nαihi(x)+j=1mβjgj(x)
    此时需要使用一般化的拉格朗日乘子方法:KKT条件,函数的最优值必定满足下面条件:
    (1)$ \frac{\partial L(x, \alpha_i)}{\partial x}=0 $;
    (2) h i ( x ) = 0 , i = 1 , 2 , ⋅ ⋅ ⋅ , n h_i(x)=0,i=1,2,···,n hi(x)=0,i=1,2,,n,另外 α i ≠ 0 \alpha_i \neq 0 αi̸=0;
    (3) ∑ j = 1 m β j g j ( x ) = 0 ; β i ≥ 0 , j = 1 , 2 , ⋅ ⋅ ⋅ , m \displaystyle \sum_{j=1}^{m}\beta_jg_j(x)=0; \quad \beta_i≥0,j=1,2,···,m j=1mβjgj(x)=0;βi0,j=1,2,,m
    对于一般的任意问题而言,KKT条件是使一组解成为最优解的必要条件,当原问题是凸问题的时候,KKT条件也是充分条件。
    前两个条件是针对极值和等式约束的,第三个条件来自不等式约束,函数的极值必须满足: g i ( x ) ≤ 0 g_i(x)\leq 0 gi(x)0,并且 α i ≥ 0 \alpha_i\geq 0 αi0,同时 ∑ j = 1 m β j g j ( x ) = 0 \displaystyle \sum_{j=1}^{m}\beta_jg_j(x)=0 j=1mβjgj(x)=0,这就要求要么某个不等式 g j ( x ) = 0 g_j(x)=0 gj(x)=0,要么其对应的 β j = 0 \beta_j=0 βj=0
    $\because \ \beta \geq0,g_k(x)\leq0 $
    ∴   β g ( x ) ≤ 0 \therefore \ \beta g(x)\leq0  βg(x)0
    ∴   m a x μ   L ( x , β ) = f ( x ) \therefore \ \underset{\mu}{max} \ L(x,\beta)=f(x)  μmax L(x,β)=f(x)
    ∴ m i n x   f ( x ) = m i n x   m a x β   L ( x , β ) ( 1 ) \therefore \underset{x}{min}\ f(x)=\underset{x}{min} \ \underset{\beta}{max} \ L(x,\beta) \qquad(1) xmin f(x)=xmin βmax L(x,β)(1)
    交换:
    m a x β   m i n x   L ( x , β ) \underset{\beta}{max} \ \underset{x}{min} \ L(x,\beta) βmax xmin L(x,β)
    = m a x β   [ m i n x   f ( x ) + m i n x β g ( x ) ] =\underset{\beta}{max} \ [\underset{x}{min} \ f(x)+\underset{x}{min} \beta g(x)] =βmax [xmin f(x)+xminβg(x)]
    = m a x β m i n x   f ( x ) + m a x β   m i n x β g ( x ) =\underset{\beta}{max} \underset{x}{min} \ f(x)+\underset{\beta}{max} \ \underset{x}{min} \beta g(x) =βmaxxmin f(x)+βmax xminβg(x)
    此时, m a x β m i n x f ( x ) = m i n x f ( x ) \underset{\beta}{max} \underset{x}{min} f(x)=\underset{x}{min} f(x) βmaxxminf(x)=xminf(x),因为 f ( x ) f(x) f(x) β \beta β无关,而:
    这里写图片描述
    m a x β   m i n x   L ( x , β ) = m i n x   f ( x ) ,   β g ( x ) = 0 ,   β = 0   ∣ ∣   g ( x ) = 0 \underset{\beta}{max} \ \underset{x}{min} \ L(x,\beta)= \underset{x}{min} \ f(x), \ \beta g(x)=0,\ \beta=0 \ ||\ g(x)=0 βmax xmin L(x,β)=xmin f(x), βg(x)=0, β=0  g(x)=0
    因此:
    m a x μ   m i n x   L ( x , μ ) = m i n x   m a x μ   L ( x , μ ) \underset{\mu}{max} \ \underset{x}{min} \ L(x,\mu)=\underset{x}{min} \ \underset{\mu}{max} \ L(x,\mu) μmax xmin L(x,μ)=xmin μmax L(x,μ)
    s . t .   μ g ( x ) = 0 s.t.\ \mu g(x)=0 s.t. μg(x=0
    μ ≥ 0 \qquad \mu \geq0 μ0
    此时极小极大问题就转变成了极大极小问题,我们称,极大极小问题是原问题的对偶问题,条件就是KKT条件。

——2018.08


支持向量机笔记:
第一页
第二页
第三页
第四页
第五页


2017.1.6

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值