Python基础

这篇博客介绍了Python基础,重点讲解了在深度学习中常用的矩阵操作,包括矩阵和tensor的转换、切割、图像显示与保存、尺寸调整、维度转换,以及CUDA与CPU间的tensor操作和list与array的互转。
摘要由CSDN通过智能技术生成

1.矩阵和tensor转换

# tensor转numpy
matrix_numpy = matrix_tensor.numpy()

# numpy转tensor
matrix_tensor = torch.from_numpy(matrix_numpy)

2.矩阵切割

# eg:切割部分图像,前两个维度分别代表高和宽,第三个维度是RGB,全选
clip_image = whole_img[left:right,top:bottom,:]

3.根据由RGB组成的二维矩阵显示并保存图像

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

pil_img = Image.fromarray(np.uint8(clip_image))
# 保存到指定路径
pil_img.save("savePath")

4.设置图像尺寸(resize)

pil_img = Image.fromarray(np.uint8(clip_image)).resize((224,224),Image.ANTIALIAS)

5.矩阵维度转换

# w*h*3转换为3*w*h
img=img.transpose((2,0,1)

6.CPU->GPU

self.model= self.model.to(opt.device)
out = self.model(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值