深度学习笔记整理(五)——提高泛化能力的方法

本文介绍了提高深度学习模型泛化能力的几种方法,包括数据增强、预处理、激活函数的选择、DropOut和DropConnect。数据增强通过图像变换增加样本多样性;预处理如均值减法、归一化和白化减少样本差异;激活函数如maxout和ReLU家族成员;DropOut和DropConnect则在训练过程中动态调整网络结构,避免过拟合。
摘要由CSDN通过智能技术生成

1.训练样本

数据增强

  • 方法:通过对样本图像平移、旋转或镜像翻转,增加样本数量;
  • 优点:使有限的数据得到最大程度的有效利用。

使用大规模数据集

  • ImageNet:基于WorldNet,按层级图像分类,动物植物食物等,末梢节点包含多张对应图像;
  • Place:在SVNDatabase基础上的扩展,包括多种场景,室内、室外、交通工具、建筑物等。

其它

  • 设置图像中间区域为感兴趣区域,可以防止变换后的样本偏离图像区域;
  • 对样本会产生形状变化的情况,如手写字符识别,先变形再数据增强,可以使用弹性变换算法,包括双线性插值或双三次插值等插值法。

2.预处理

原因:当样本类别内差异较大时,为了减少样本差异,会进行预处理。

方法:均值减法、归一化、白化。

均值减法

  • 大规模的物体识别预处理的方式;
  • eg:图像识别中,训练样本-均值图像=输入数据(差分图像),经过处理后,数据平均值会变为0,图像整体亮度变化可以得到抑制。

归一化

  • 为样本的均值和方差添加约束的一
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值