概率期望学习笔记

论文:浅析算法竞赛中一类数学期望问题的解决方法

参考:Remoon

其实作为一个OIer并不需要搞得太深吧,只要明确概念就可以做题了。

概率

定义

离散概率:如果样本空间 S S S由有限个等概率的简单事件组成,事件 E E E发生的概率是 P ( E ) = ∣ E ∣ ∣ Ω ∣ P(E)=\frac{|E|}{|\Omega|} P(E)=ΩE

离散概率与连续概率相对,同理离散变量与连续变量相对。

条件概率

定义 P ( A ∣ B ) P(A|B) P(AB)表示B发生的前提下A发生的概率,那么 P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)

乘法公式

P ( A B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(AB)=P(A|B)P(B)=P(B|A)P(A) P(AB)=P(AB)P(B)=P(BA)P(A)

全概率公式

假设 ∀ i , j , B i ∩ B j = ∅ , ⋃ 1 ∞ B i = Ω \forall i,j,B_i \cap B_j=\varnothing,\bigcup_{1}^{\infty} B_i=\Omega i,j,BiBj=,1Bi=Ω

因为 ∑ P ( B i ) = 1 \sum P(B_i)=1 P(Bi)=1

所以 P ( A ) = ∑ P ( A ∣ B i ) P ( B i ) P(A)=\sum P(A|B_i)P(B_i) P(A)=P(ABi)P(Bi)

贝叶斯公式

就是全概率公式的变形。

P ( B i ∣ A ) = P ( A B i ) P ( A ) = P ( A ∣ B i ) P ( B i ) ∑ j P ( A ∣ B j ) P ( B j ) P(B_i|A)=\frac{P(AB_i)}{P(A)}=\frac{P(A|B_i)P(B_i)}{\sum_{j} P(A|B_j)P(B_j)} P(BiA)=P(A)P(ABi)=jP(ABj)P(Bj)P(ABi)P(Bi)

意义是用于分析 A A A发生的原因吧, P ( B i ∣ A ) P(B_i|A) P(BiA)的意义是 A A A发生的情况下 B i B_i Bi条件被满足的概率,也称为后验概率。

期望

定义

随机变量:既不随机也不是变量,而是函数,即 f : Ω → R f:\Omega \to R f:ΩR

X X X是一个离散的随机变量,取值为 x 1 , x 2 , . . . x_1,x_2,... x1,x2,...,对应的概率为 P ( X = x 1 ) , P ( X = x 2 ) , . . . P(X=x_1),P(X=x_2),... P(X=x1),P(X=x2),...,那么随机变量 X X X的期望就是

E ( X ) = ∑ x i P ( X = x i ) E(X)=\sum x_iP(X=x_i) E(X)=xiP(X=xi)

线性性质

  • 对于任意 X , Y X,Y X,Y和常数 a , b a,b a,b,有 E ( a X + b Y ) = a E ( X ) + b E ( Y ) E(aX+bY)=aE(X)+bE(Y) E(aX+bY)=aE(X)+bE(Y)

  • X X X Y Y Y满足 P ( X ∣ Y ) = P ( X )    a n d    P ( Y ∣ X ) = P ( Y ) P(X|Y)=P(X) \; and \; P(Y|X)=P(Y) P(XY)=P(X)andP(YX)=P(Y) P ( X Y ) = P ( X ) P ( Y ) P(XY)=P(X)P(Y) P(XY)=P(X)P(Y)那么这样的事件 X X X Y Y Y独立(上面是定义式)

  • 所以 X X X Y Y Y独立且各自有一个已定义的期望时 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

条件期望

定义 X = x i X=x_i X=xi Y Y Y的期望价值为 E ( Y ∣ X = x i ) E(Y|X=x_i) E(YX=xi)

全期望公式

公式如下

E ( Y ) = E ( E ( Y ∣ X ) ) = ∑ i E ( Y ∣ X = x i ) P ( X = x i ) E(Y)=E(E(Y|X))=\sum_{i}E(Y|X=x_i)P(X=x_i) E(Y)=E(E(YX))=iE(YX=xi)P(X=xi)

公式推导

E ( E ( Y ∣ X ) ) = ∑ i E ( Y ∣ X = x i ) P ( X = x i ) E(E(Y|X))=\sum_{i}E(Y|X=x_i)P(X=x_i) E(E(YX))=iE(YX=xi)P(X=xi)

= ∑ i P ( X = x i ) ∑ k y k P ( X = x i , Y = y k ) P ( X = x i ) =\sum_{i} P(X=x_i) \sum_{k}y_k \frac{P(X=x_i,Y=y_k)}{P(X=x_i)} =iP(X=xi)kykP(X=xi)P(X=xi,Y=yk)

= ∑ k ∑ i y k P ( X = x i , Y = y k ) =\sum_{k}\sum_{i}y_kP(X=x_i,Y=y_k) =kiykP(X=xi,Y=yk)

= ∑ k y k P ( Y = y k ) =\sum_{k}y_kP(Y=y_k) =kykP(Y=yk)

= E ( Y ) =E(Y) =E(Y)

意义就是一个随机变量的期望价值等于在各个条件下期望价值之和。

方差

定义方差为随机变量取值与期望的差的平方的期望,形式化表示如下:

V ( X ) = E [ ( X − E ( X ) ) 2 ] V(X)=E[(X-E(X))^2] V(X)=E[(XE(X))2]

根据期望的线性性化简如下:

V ( X ) = E [ ( X − E ( X ) ) 2 ] = E [ X 2 − 2 ∗ X ∗ E ( X ) + E ( X ) 2 ] = E ( X 2 ) − E ( X ) 2 \begin{aligned} V(X)&=E[(X-E(X))^2] \\&=E[X^2-2*X*E(X)+E(X)^2] \\&=E(X^2)-E(X)^2 \end{aligned} V(X)=E[(XE(X))2]=E[X22XE(X)+E(X)2]=E(X2)E(X)2

简单来说就是:方差等于平方的期望减去期望的平方。

练习

明确概念之后就去做练习吧。不定期更新一点。

Expected Square Beauty

CF1187F

一个序列,每个位置等概率出现[l,r]之间的整数,一个序列的权值等于这个序列中连续相同子序列的个数。比如B{1,1,1,2,2}=2,或者B{1,2,1,2,1}=5。求期望权值的平方。

说是期望还不是一个数数题。

首先简化题意,令 E ( i ) = [ x i = ̸ x i − 1 ] E(i)=[x_i =\not x_{i-1} ] E(i)=[xi=xi1],特别的 E ( 1 ) = 1 E(1)=1 E(1)=1,那么 a n s = ( ∑ E ( i ) ) 2 ans=(\sum E(i))^2 ans=(E(i))2

然后发现对于不同的 i , j i,j i,j E ( i ) E(i) E(i) E ( j ) E(j) E(j)并不一定是独立的, i = j i=j i=j ∣ i − j ∣ = 1 |i-j|=1 ij=1时就不是,所以分类讨论解决这个式子。

【香蕉OI】 hope

题目跳转

求方差的题,需要用到“方差等于平方的期望减去期望的平方”这个公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值