概率论基础 - 2 - 期望

本文介绍期望。

期望

定义

数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。 ——百度百科

  • 期望描述了随机变量的平均情况,衡量了随机变量 的均值。它是概率分布的泛函(函数的函数)。
计算方法
离散型
  • 离散随机变量 X X X的期望:

E [ X ] = ∑ i = 1 ∞ x i p i \mathbb{E}[X]=\sum_{i=1}^{\infty} x_{i} p_{i} E[X]=i=1xipi

  • 若右侧级数不收敛,则期望不存在。
连续型
  • 连续随机变量 X X X的期望:

E [ X ] = ∫ − ∞ ∞ x p ( x ) d x \mathbb{E}[X]=\int_{-\infty}^{\infty} x p(x) d x E[X]=xp(x)dx

  • 若右侧级数不收敛,则期望不存在。
定理
  • 定理:对于随机变量$ X$, 设 $ Y=g(X) $ 也为随机变量,$ g(\cdot) $ 是连续函数。
离散型
  • 若$ X 为 离 散 随 机 变 量 , 若 为离散随机变量,若 Y$的期望存在,则:

E [ Y ] = E [ g ( X ) ] = ∑ i = 1 ∞ g ( x i ) p i \mathbb{E}[Y]=\mathbb{E}[g(X)]=\sum_{i=1}^{\infty} g\left(x_{i}\right) p_{i} E[Y]=E[g(X)]=i=1g(xi)pi

  • 也记作:

{% raw %}
E X ∼ P ( X ) [ g ( X ) ] = ∑ x g ( x ) p ( x ) \mathbb{E}_{X \sim P(X)}[g(X)]=\sum_{x} g(x) p(x) EXP(X)[g(X)]=xg(x)p(x)

{% endraw %}

连续型
  • 若$ X 为 连 续 随 机 变 量 , 若 为连续随机变量,若 Y$的期望存在,则:

E [ Y ] = E [ g ( X ) ] = ∫ − ∞ ∞ g ( x ) p ( x ) d x \mathbb{E}[Y]=\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) p(x) d x E[Y]=E[g(X)]=g(x)p(x)dx

  • 也记作:

E X ∼ P ( X ) [ g ( X ) ] = ∫ g ( x ) p ( x ) d x \mathbb{E}_{X \sim P(X)}[g(X)]=\int g(x) p(x) d x EXP(X)[g(X)]=g(x)p(x)dx

用法
  • 该定理的意义在于:当求 E [ Y ] \mathbb{E}[Y] E[Y] 时,不必计算出 Y Y Y的分布,只需要利用 X X X的分布即可。
  • 该定理可以推广至两个或两个以上随机变量的情况。
性质
  • 常数的期望就是常数本身
  • 对常数 C C C有 :

E [ C X ] = C E [ X ] \mathbb{E}[C X]=C \mathbb{E}[X] E[CX]=CE[X]

  • 对两个随机变量 X , Y X,Y X,Y,有:

E [ X + Y ] = E [ X ] + E [ Y ] \mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y] E[X+Y]=E[X]+E[Y]

该结论可以推广到任意有限个随机变量之和的情况

  • 对两个相互独立的随机变量,有:

E [ X Y ] = E [ X ] E [ Y ] \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y] E[XY]=E[X]E[Y]

该结论可以推广到任意有限个相互独立的随机变量之积的情况

参考资料

  • http://www.huaxiaozhuan.com/%E6%95%B0%E5%AD%A6%E5%9F%BA%E7%A1%80/chapters/2_probability.html
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值