Beam search 算法的通俗理解

Beam search 算法在文本生成中用得比较多,用于选择较优的结果(可能并不是最优的)。接下来将以seq2seq机器翻译为例来说明这个Beam search的算法思想。
在机器翻译中,beam search算法在测试的时候用的,因为在训练过程中,每一个decoder的输出是有与之对应的正确答案做参照,也就不需要beam search去加大输出的准确率。
有如下从中文到英语的翻译:
中文:

我 爱 学习,学习 使 我 快乐

英语:

I love learning, learning makes me happy

在这个测试中,中文的词汇表是{我,爱,学习,使,快乐},长度为5。英语的词汇表是{I, love, learning, make, me, happy}(全部转化为小写),长度为6。那么首先使用seq2seq中的编码器对中文序列(记这个中文序列为 X X X)进行编码,得到语义向量 C C C
seq2seq
得到语义向量 C C C后,进入解码阶段,依次翻译成目标语言。在正式解码之前,有一个参数需要设置,那就是beam search中的beam size,这个参数就相当于top-k中的k,选择前k个最有可能的结果。在本例中,我们选择beam size=3。

来看解码器的第一个输出 y 1 y_1 y1,在给定语义向量 C C C的情况下,首先选择英语词汇表中最有可能k个单词,也就是依次选择条件概率 P ( y 1 ∣ C ) P(y_1|C) P(y1C)前3大对应的单词,比如这里概率最大的前三个单词依次是 I I I l e a r n i n g learning learning h a p p y happy happy

接着生成第二个输出 y 2 y_2 y

好的,我会尽力用通俗易懂的语言来解释集束搜索。 集束搜索(Beam Search)是一种用于生成序列型数据的搜索算法,在自然语言处理中常用于机器翻译和文本生成任务。 在序列生成任务中,我们希望根据输入的上下文生成一个符合语法和语义规则的输出序列,比如将一段英文句子翻译成中文。而集束搜索就是一种在这个生成过程中选择最优候选序列的方法。 集束搜索的基本思想是维护一个候选序列集合(也称为集束)。在每个时间步,我们根据当前的模型预测结果和之前的候选序列,生成新的候选序列。然后,通过对候选序列进行评分和排序,选择得分最高的几个候选序列作为下一步的搜索空间。这样,我们可以在搜索过程中保留多个可能的解决方案,而不只是单一的最优解。 集束搜索中的一个重要参数是集束大小(Beam Size),它决定了每个时间步保留的候选序列数量。较大的集束大小可以增加搜索空间,但也会增加计算量。因此,选择适当的集束大小是一个权衡取舍的问题。 要掌握集束搜索的理论知识,你可以深入学习相关的教材和论文。了解集束搜索的基本原理、候选序列的生成和评分排序是非常重要的。此外,通过实践项目来应用集束搜索也是非常有帮助的,比如构建一个机器翻译系统或文本生成模型。 希望这样的解释对你有帮助!如果还有其他问题,请随时提问。祝你在学习NLP的道路上取得进步!加油!
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值