[BZOJ2111][ZJOI2010]排列计数(DP+组合数)

题意:求 1 n的所有排列中,满足小根堆性质的排列的个数。
这里建立 DP 模型: f[i] 表示 i 个不同的数的所有排列中满足小根堆性质的排列的个数。
对于转移,首先计算出i个节点的完全二叉树中,根节点的左子树包含的节点数 l ,右子树包含的节点数r
首先,根节点的值必须为最小值。再考虑剩下的 i1 个节点。很容易想到,可以在这 i1 个节点中选出 l 个节点作为左子树,剩下的r个节点作为右子树。所以得出转移:
f[i]=Cli1f[l]f[r]
同时注意坑点: n 可以大于p,所以求组合数要用到 Lucas 定理。
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 1e6 + 5;
int n, PYZ, f[N], fac[N], Log[N], inv[N];
int qpow(int a, int b) {
    int res = 1;
    while (b) {
        if (b & 1) res = 1ll * res * a % PYZ;
        a = 1ll * a * a % PYZ;
        b >>= 1;
    }
    return res;
}
int C(int x, int y) {
    if (!y) return 1;
    int u = C(x / PYZ, y / PYZ), v = x % PYZ, w = y % PYZ, z;
    if (v < w) z = 0;
    else z = 1ll * (1ll * fac[v] * inv[w] % PYZ) * inv[v - w] % PYZ;
    return 1ll * u * z % PYZ;
}
int main() {
    int i, kx, l = 1, r = 1; n = read(); PYZ = read();
    fac[0] = 1; Log[0] = -1;
    for (i = 1; i <= n; i++) fac[i] = 1ll * fac[i - 1] * i % PYZ,
        Log[i] = Log[i >> 1] + 1;
    kx = min(PYZ - 1, n); inv[kx] = qpow(fac[kx], PYZ - 2);
    for (i = kx - 1; i >= 0; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % PYZ;
    f[1] = f[2] = 1; f[3] = 2;
    for (i = 4; i <= n; i++) {
        if (i - (1 << Log[i]) + 1 <= (1 << Log[i] - 1)) l++;
        else r++;
        f[i] = 1ll * (1ll * C(i - 1, l) * f[l] % PYZ) * f[r] % PYZ;
    }
    printf("%d\n", f[n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值