[BZOJ2286][SDOI2011]消耗战(虚树+树形DP)

看到题目的条件,容易想到是一道树形DP题,设 f[u] 为让 u 不能到达u的子树内(不包括 u )的任意关键点(能源丰富的岛屿)的最小代价。如果u是叶子节点,那么 f[u]=0
转移就是枚举子节点 v ,设val(u,v)为边 (u,v) 的权值,则转移为:
如果 v 是关键点,那么f[u]+=val(u,v)
否则 f[u]+=min(val(u,v),f[v])
考虑到询问次数较大,但给出关键点的总数很少,因此可以构建出一个虚树。注意把 1 <script type="math/tex" id="MathJax-Element-13">1</script>号节点加入关键点。
如果对虚树不了解,可参考神犇zzq的博客:https://www.cnblogs.com/zzqsblog/p/5560645.html
构建完虚树后,就可以在虚树上DP了。注意虚树上一条边的边权为原树上这两点的路径上边权的最小值。
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
typedef long long ll;
const int N = 25e4 + 5, LogN = 23, INF = 0x3f3f3f3f;
int n, m, ecnt, nxt[N << 1], adj[N], go[N << 1], val[N << 1], dep[N], dfn[N],
times, top, stk[N], fa[N][LogN], mv[N][LogN], vir[N], vn, par[N], vi[N], tm,
yy[N]; ll ans[N]; bool isvir[N];
void add_edge(int u, int v, int w) {
    nxt[++ecnt] = adj[u]; adj[u] = ecnt; go[ecnt] = v; val[ecnt] = w;
    nxt[++ecnt] = adj[v]; adj[v] = ecnt; go[ecnt] = u; val[ecnt] = w;
}
void dfs(int u, int fu) {
    int i; fa[u][0] = fu; dep[u] = dep[fu] + 1;
    for (i = 0; i <= 19; i++)
        fa[u][i + 1] = fa[fa[u][i]][i],
        mv[u][i + 1] = min(mv[u][i], mv[fa[u][i]][i]);
    dfn[u] = ++times;
    for (int e = adj[u], v; e; e = nxt[e])
        if ((v = go[e]) != fu)
            mv[v][0] = val[e], dfs(v, u);
}
int lca(int u, int v) {
    int i; if (dep[u] < dep[v]) swap(u, v);
    for (i = 20; i >= 0; i--) {
        if (dep[fa[u][i]] >= dep[v]) u = fa[u][i];
        if (u == v) return u;
    }
    for (i = 20; i >= 0; i--)
        if (fa[u][i] != fa[v][i])
            u = fa[u][i], v = fa[v][i];
    return fa[u][0];
}
int dis(int u, int v) {
    int i, ans = INF;
    for (i = 20; i >= 0; i--) {
        if (dep[fa[u][i]] >= dep[v])
            ans = min(ans, mv[u][i]), u = fa[u][i];
        if (u == v) return ans;
    }
    return ans;
}
bool comp(int u, int v) {
    return dfn[u] < dfn[v];
}
void build() {
    int i, tmp = vn; top = 0;
    sort(vir + 1, vir + vn + 1, comp);
    for (i = 1; i <= tmp; i++) {
        int u = vir[i];
        if (!top) {
            par[u] = 0;
            stk[++top] = u;
            continue;
        }
        int w = lca(stk[top], u);
        while (dep[stk[top]] > dep[w]) {
            if (dep[stk[top - 1]] < dep[w]) par[stk[top]] = w;
            top--;
        }
        if (w != stk[top]) {
            vir[++vn] = w;
            par[w] = stk[top];
            stk[++top] = w;
        }
        par[u] = w; stk[++top] = u;
    }
    sort(vir + 1, vir + vn + 1, comp);
}
void DP() {
    int i; for (i = 1; i <= vn; i++) ans[vir[i]] = 0;
    for (i = vn; i >= 2; i--) {
        int u = vir[i];
        if (isvir[u]) ans[par[u]] += 1ll * vi[u];
        else ans[par[u]] += min(1ll * vi[u], ans[u]);
    }
}
ll solve() {
    int i; for (i = 2; i <= vn; i++)
        vi[vir[i]] = dis(vir[i], par[vir[i]]);
    return DP(), ans[1];
}
int main() {
    int i, x, y, z; n = read();
    for (i = 1; i < n; i++) {
        x = read(); y = read(); z = read();
        add_edge(x, y, z);
    }
    dfs(1, 0); m = read(); while (m--) {
        vn = read() + 1; vir[1] = 1; tm = vn - 1;
        for (i = 2; i <= vn; i++) vir[i] = yy[i - 1] = read(),
            isvir[vir[i]] = 1; build();
        printf("%lld\n", solve());
        for (i = 1; i <= tm; i++) isvir[yy[i]] = 0;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值