[BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)

考虑一个DP方案:
f[i][j] 表示到序列的第 i 个数,乘积模M等于 j 的序列个数。
然而,O(M2N)的朴素DP和 O(M3logN) 的矩阵快速幂都过不去。
考虑到如果不是乘积模 M 等于j,而是和模 M 等于j
那么可以利用快速幂+卷积实现 O(MlogMlogN) 的复杂度。
也就是说,如果把一个状态看作一个多项式,即
f[i][1]+f[i][2]x+f[i][3]x2+...+f[i][M1]xM2
把转移也看作一个多项式,即如果给定的集合内包含 x ,则in[x]=1,否则等于 0 ,则转移对应的多项式为:
in[1]+in[2]x+in[3]x2+...+in[M1]xM2
则此时可以得出: f[i+1]=f[i]in 。(每一次多项式乘法之后,所有次数为 k k>M2)的项都要加到次数为 k(M1) 的项上面去,并把次数为 k 的项清零)
最后结果就是inN[x]。可以用FFT或NTT求出。
回到问题,可以发现乘积在一定条件下可以转换成和:由于此题中的 M 是质数,所以只需要求出M的原根 g ,并用gi形式的式子代替问题中所有 [1,M) 的数,这样就能把乘积转换成和了。
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 6e5 + 5, ZZQ = 1004535809;
int n, PYZ, X, m, cnt[N], G, tot, cyx[N], maxn, orz, rev[N], ans[N],
to[N], res[N], A[N], B[N];
inline int qpow(int a, int b, const int &MX) {
    int res = 1;
    while (b) {
        if (b & 1) res = 1ll * res * a % MX;
        a = 1ll * a * a % MX;
        b >>= 1;
    }
    return res;
}
inline int orzPyzDalao() {
    int i, j, S = sqrt(PYZ - 1), tmp = PYZ - 1;
    for (i = 2; i <= S; i++) if (!(tmp % i)) {
        cyx[++tot] = i;
        while (!(tmp % i)) tmp /= i;
    }
    if (tmp > 1) cyx[++tot] = tmp;
    for (i = 2; i < PYZ; i++) {
        bool flag = 1;
        for (j = 1; j <= tot; j++)
            if (qpow(i, (PYZ - 1) / cyx[j], PYZ) == 1)
                {flag = 0; break;}
        if (flag) return i;
    }
    return -19370707;
}
inline void NTT(const int &n, int *a, const int &op) {
    int i, j, k, r = op == 1 ? 3 : 334845270;
    for (i = 0; i < n; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);
    for (k = 1; k < n; k <<= 1) {
        int x = qpow(r, (ZZQ - 1) / (k << 1), ZZQ);
        for (i = 0; i < n; i += (k << 1)) {
            int w = 1;
            for (j = 0; j < k; j++) {
                int u = a[i + j], v = 1ll * w * a[i + j + k] % ZZQ;
                a[i + j] = (u + v) % ZZQ; a[i + j + k] = (u - v + ZZQ) % ZZQ;
                w = 1ll * w * x % ZZQ;
            }
        }
    }
}
inline void prod(const int &n, int *a, int *b) {
    int i; NTT(n, a, 1); NTT(n, b, 1);
    for (i = 0; i <= n; i++) ans[i] = 1ll * a[i] * b[i] % ZZQ, a[i] = b[i] = 0;
    NTT(n, ans, -1); for (i = 0; i <= n; i++)
        ans[i] = 1ll * ans[i] * qpow(n, ZZQ - 2, ZZQ) % ZZQ;
    for (i = PYZ - 1; i <= n; i++)
        (ans[i % (PYZ - 1)] += ans[i]) %= ZZQ, ans[i] = 0;
}
int main() {
    int i; n = read(); PYZ = read(); X = read(); m = read();
    G = orzPyzDalao(); orz = 14; maxn = 1 << 14;
    for (i = 0; i <= maxn; i++)
        rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << orz - 1);
    int x = 1; for (i = 0; i < PYZ - 1; i++)
        to[x] = i, x = 1ll * x * G % PYZ;
    while (m--) {
        x = read(); if (x) cnt[to[x % PYZ]] = 1;
    }
    res[0] = 1; while (n) {
        if (n & 1) {
            for (i = 0; i <= maxn; i++) A[i] = res[i], B[i] = cnt[i];
            prod(maxn, A, B);
            for (i = 0; i <= maxn; i++) res[i] = ans[i];
        }
        for (i = 0; i <= maxn; i++) A[i] = B[i] = cnt[i];
        prod(maxn, A, B);
        for (i = 0; i <= maxn; i++) cnt[i] = ans[i];
        n >>= 1;
    }
    cout << res[to[X]] << endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值