[题解]CLYZ2018省选训(bao)练(zha)模拟赛 Day 1

重新认识了Kruskal算法。

题目

T1:BZOJ 3293 / CQOI 2011 分金币 (coin)(乱搞???)
T2:BZOJ 1007 / HNOI 2008 水平可见直线 (line)(栈维护凸壳)
T3:BZOJ 1016 / JSOI 2008 最小生成树计数 (award)(Kruskal+计数)

T1

分析

下面,将「第 i i 个人给第j个人 k k 个金币」定义为:
k0,则第 i i 个人的金币数减k,第 j j 个人的金币数加k
否则第 i i 个人的金币数加k,第 j j 个人的金币数减k,也就是第 j j 个人给第i个人 k − k 个金币。
并且第 i i 个人初始的金币数量为xi,平均值为 x¯ x ¯ sum[l,r] s u m [ l , r ] ri=la[i] ∑ i = l r a [ i ] 的值。
首先考虑把第 1 1 个人的金币数量变成x¯,那么可以得到,第 1 1 个人给第2个人的金币加上第 1 1 个人给第n个人的金币数量一定等于 x1x¯ x 1 − x ¯ 。这样第 1 1 个人给了第2个人和第 n n 个人金币之后,第2个人就不用再给第 1 1 个人金币了,也就是说第2个人只需要给第 3 3 个人金币。照这样计算下去,第1个人给了第 2 2 个人和第n个人金币之后,对于所有的 1<i<n 1 < i < n ,第 i i 个人只需要给第i+1个人金币,使得第 i i 个人的金币数量变为x¯
而现在的关键就是求得第 2 2 个人被第1个人分到金币后的金币数目(下面记为 w w )。
可以推出,第1个人分给了第 2 2 个人wx2个金币,也分给了第 n n 个人x1+x2wx¯个金币,代价为:
|w(x1+x2x¯)|+|wx2| | w − ( x 1 + x 2 − x ¯ ) | + | w − x 2 |
再继续考虑第 2 2 个人到第n1个人:
可以算出,第 2 2 个人分给第3个人金币,使得第 2 2 个人的金币数量变为x¯的代价为 |wx¯| | w − x ¯ | 。这样,第 3 3 个人的金币数量变成了x3+wx¯,所以分给第 4 4 个人金币的代价为|w(2x¯x3)|
所以,对于所有的 2<i<n 2 < i < n ,第 i i 个人分给第i+1个人金币的代价为:
|w((i1)x¯sum[3,i])| | w − ( ( i − 1 ) x ¯ − s u m [ 3 , i ] ) |
所以,设一个新的数组 b b ,定义:
b1=x1+x2x¯
b2=x2 b 2 = x 2
b3=x¯ b 3 = x ¯
3<in,bi=(i2)x¯sum[3,i1] ∀ 3 < i ≤ n , b i = ( i − 2 ) x ¯ − s u m [ 3 , i − 1 ]
这时候,就是要找到一个值 w w ,最小化i=1n|wbi|的值。
显然(也就是我不会严谨证明), w w 的值为数组b的中位数。将 b b 排序之后,就可以找到这个w

Source

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
typedef long long ll;
const int N = 1e5 + 5;
int n; ll a[N], ave, sum[N], b[N], ans;
ll cyx(int l, int r) {
    return sum[r] - sum[l - 1];
}
int main() {
    int i; n = read();
    for (i = 1; i <= n; i++) ave += (a[i] = read()); ave /= n;
    if (n == 1) return printf("0\n"), 0;
    for (i = 1; i <= n; i++) sum[i] = sum[i - 1] + a[i];
    b[1] = a[1] + a[2] - ave; b[2] = a[2]; for (i = 3; i <= n; i++)
        b[i] = ave * (i - 2) - cyx(3, i - 1);
    sort(b + 1, b + n + 1); if (!(n & 1)) {
        for (i = 1; i <= (n >> 1); i++) ans += b[n >> 1] - b[i];
        for (i = (n >> 1) + 1; i <= n; i++)
            ans += b[i] - b[n >> 1];
    }
    else {
        for (i = 1; i <= (n >> 1) + 1; i++) ans += b[(n >> 1) + 1] - b[i];
        for (i = (n >> 1) + 2; i <= n; i++)
            ans += b[i] - b[(n >> 1) + 1];
    }
    cout << ans << endl;
    return 0;
}

T2

分析

首先,将所有的直线按照斜率( A A ) 从小到大排序,相同情况按照B从小到大排序,这样, A A 相同的直线中只有B最大的才可见。这样先去除掉一些一定被覆盖的直线,使每条直线的 A A 都不同。
如果合法直线只有不到3条,那么所有的合法直线都可见。
否则建立一个栈,把前 2 2 条直线加入栈中,这2条直线在其他的直线被加入之前全部可见。
考虑加入一条新的直线。加入一条新的直线之后,在这之前栈中的直线(可见)有可能被覆盖,但由于已经按 A A 排序,所以如果栈中的一条直线l1在加入了这条直线 l2 l 2 之后被覆盖,那么栈中 l1 l 1 之后的直线(除 l2 l 2 外)必然被覆盖。因此在加入 l2 l 2 之前,应该:
(1)判断栈顶直线是否会在加入 l2 l 2 之后被覆盖,如果有则转(2),否则将 l2 l 2 加入栈中;
(2)将栈顶元素退栈,转(1)。
操作完成后,栈中剩余的直线就是答案。

Source

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 5e4 + 5; const double eps = 1e-9;
int n; struct cyx {
    int id, k, b;
} cx[N], pyz[N]; int top, stk[N]; bool del[N];
bool comp(cyx a, cyx b) {
    if (a.k != b.k) return a.k < b.k;
    return a.b < b.b;
}
bool slope(int p1, int p2, int p3) {
    double x1 = 1.0 * (cx[p2].b - cx[p1].b) / (cx[p1].k - cx[p2].k),
        x2 = 1.0 * (cx[p3].b - cx[p2].b) / (cx[p2].k - cx[p3].k);
    return x1 > x2 || abs(x1 - x2) <= eps;
}
int main() {
    int i, Tn, m = 0; Tn = n = read();
    for (i = 1; i <= n; i++) cx[i].k = read(), cx[i].b = read(), cx[i].id = i;
    sort(cx + 1, cx + n + 1, comp); for (i = 1; i <= n; i++)
        if (i == n || cx[i].k != cx[i + 1].k) pyz[++m] = cx[i];
    n = m; for (i = 1; i <= n; i++) cx[i] = pyz[i];
    if (n < 3) {
        for (i = 1; i <= n; i++) del[cx[i].id] = 1;
        for (i = 1; i <= Tn; i++) if (del[i]) printf("%d ", i);
        printf("\n"); return 0;
    }
    stk[1] = 1; stk[top = 2] = 2; for (i = 3; i <= n; i++) {
        while (top > 1 && slope(stk[top - 1], stk[top], i)) top--;
        stk[++top] = i;
    }
    for (i = 1; i <= top; i++) del[cx[stk[i]].id] = 1;
    for (i = 1; i <= Tn; i++) if (del[i]) printf("%d ", i);
    cout << endl;
    return 0;
}

T3 最小生成树计数

分析

先把边按权值排序。假设现在考虑到的是所有权值为 w w 的边,并且所有权值小于w的合法边已经在最小生成树内。这样考虑一个贪心,把所有的权值为 w w 都加入最小生成树内,但这样会形成环。又由于要求边权和最小的生成树,所以要在所有边权为w的边中,删掉尽可能少的边,使得当前的生成树没有环。这样等同于在当前的生成树内,删掉这些边后每对点之间的连通性不变。而一个 m m 个点的连通图,去掉尽可能少的边使图仍然连通,答案一定是让这个连通图只剩下m1条边。
归纳一下,得出结论:在一张图的每一个最小生成树中,同一权值的边的出现次数连通的点集相同。
因此,先将边按权值排序,然后做一遍Kruskal,求出每种权值边的出现次数。
然后按顺序考虑每种权值:由于同种权值的边数 10 ≤ 10 ,因此可以 210 2 10 暴力枚举每条边选或不选,只要没有环并且选出边的条数恰好等于预处理出的次数,这种选法就是合法的。这时候,这种权值的结果就是合法方案的个数。
最后把每种权值的合法方案个数相乘,得到最终结果。
实现上的细节:
1、考虑完一种权值之后,要保留这种权值的边连通的集合。具体用个例子: n=4 n = 4 m=5 m = 5 ,有边 (1,2,1) ( 1 , 2 , 1 ) (1,3,1) ( 1 , 3 , 1 ) (2,3,2) ( 2 , 3 , 2 ) (2,4,2) ( 2 , 4 , 2 ) (3,4,2) ( 3 , 4 , 2 ) 。(三元组的第三个元素表示边权)这时候如果不保留连通的集合,那么权值 1 1 的结果为1,权值 2 2 的结果为3,但最后结果是 2 2 而不是3,原因很简单:方案 (1,2) ( 1 , 2 ) (1,3) ( 1 , 3 ) (2,3) ( 2 , 3 ) ,虽然权值为 1 1 2的边都构不成环,但是合起来就构成环了。但如果保留连通集合,也就是考虑完权值 1 1 之后,将(1,2) (1,3) ( 1 , 3 ) (2,3) ( 2 , 3 ) 标记为已连通,那么权值为 2 2 的边的选择方案种,(2,3)就不是一个合法的方案。具体可以用并查集来实现。
2、注意图不联通的情况,输出 0 0 <script type="math/tex" id="MathJax-Element-266">0</script>。

Source

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 105, M = 1005, ZZQ = 31011;
int n, fa[N], m, d, cnt[M], pyz[M], sel[M], ans[M], L[M], R[M], F[M], lyt[M];
struct cyx {
    int u, v, w;
} orz[M];
bool comp(cyx a, cyx b) {
    return a.w < b.w;
}
int cx(int x) {
    if (fa[x] != x) fa[x] = cx(fa[x]);
    return fa[x];
}
bool zm(int x, int y) {
    int ix = cx(x), iy = cx(y);
    if (ix == iy) return 0;
    return fa[iy] = ix, 1;
}
void kruskal() {
    int i; for (i = 1; i <= n; i++) fa[i] = i;
    for (i = 1; i <= m; i++) if (zm(orz[i].u, orz[i].v)) sel[i] = 1;
}
void dfs(int cyx, int dep, int sta) {
    if (dep == R[cyx] + 1) {
        int i, cnt = 0; for (i = 1; i <= n; i++) fa[i] = F[i];
        for (i = 0; i < R[cyx] - L[cyx] + 1; i++)
            if ((sta >> i) & 1) cnt++; if (cnt != pyz[cyx]) return;
        for (i = 0; i < R[cyx] - L[cyx] + 1; i++)
            if (((sta >> i) & 1) && !zm(orz[L[cyx] + i].u, orz[L[cyx] + i].v))
                return; ans[cyx]++;
        if (ans[cyx] == 1) for (i = 1; i <= n; i++) lyt[i] = fa[i];
        return;
    }
    dfs(cyx, dep + 1, sta);
    dfs(cyx, dep + 1, sta | (1 << dep - L[cyx]));
}
int main() {
    int i, j; n = read(); m = read();
    for (i = 1; i <= m; i++) orz[i].u = read(), orz[i].v = read(),
        orz[i].w = read(); sort(orz + 1, orz + m + 1, comp);
    kruskal(); for (i = 1; i <= m;) {
        L[++d] = i; for (j = i; orz[i].w == orz[j].w && j <= m; j++)
            cnt[d]++, pyz[d] += sel[j]; R[d] = j - 1;
        i = j;
    }
    for (i = 1; i <= n; i++) fa[i] = i;
    for (i = 1; i <= d; i++) if (pyz[i] && cnt[i] == 1)
        zm(orz[L[i]].u, orz[L[i]].v);
    for (i = 1; i <= n; i++) F[i] = fa[i], fa[i] = i;
    for (i = 1; i <= d; i++) {
        if (!pyz[i]) continue;
        if (cnt[i] == 1) ans[i] = 1;
        else {
            dfs(i, L[i], 0);
            for (j = 1; j <= n; j++) F[j] = lyt[j];
        }
    }
    int wohaocaia = 1; for (i = 1; i <= d; i++) if (pyz[i])
        wohaocaia = wohaocaia * ans[i] % ZZQ;
    for (i = 1; i <= n; i++) fa[i] = i; for (i = 1; i <= m; i++)
        zm(orz[i].u, orz[i].v); for (i = 2; i <= n; i++)
        if (cx(1) != cx(i)) return printf("0\n"), 0;
    cout << wohaocaia << endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值