[BZOJ4903][UOJ300][Ctsc2017]吉夫特(DP+优化)

显然,要满足

i=2k(abi1abi)mod2=(ab1ab2)×(ab2ab3)××(abk1abk)mod2>0 ∏ i = 2 k ( a b i − 1 a b i ) mod 2 = ( a b 1 a b 2 ) × ( a b 2 a b 3 ) × ⋯ × ( a b k − 1 a b k ) mod 2 > 0

当且仅当上面乘式的每一项都是奇数。
根据Lucas定理可以推出, (nm) ( n m ) 为奇数,当且仅当对于任何一个 i i ,都有:
如果n的第 i i 个二进制位为0,那么 m m 的第i个二进制位不能为 1 1
如果把一个二进制数看作一个集合(第i位为 1 1 表示集合里有i,否则表示集合里没有 i i ),
那么可以得出:
(nm)1(mod2)m n n 的子集
定义状态f[i]表示以 i i 为终点的合法子序列个数。
加一个统计数组sum sum[s] s u m [ s ] 表示当前满足 s s ai的子集的 fi f i 之和。
然后每算出一个 f[i] f [ i ] 之后枚举 ai a i 的子集加入 sum s u m
由于所有的 ai a i 互不相同,所以复杂度为 O(3logai) O ( 3 log ⁡ a i )
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 3e5 + 5, MX = 1e9 + 7;
int n, a[N], cnt[N], f[N], ans;
int main() {
    int i, j; n = read(); for (i = 1; i <= n; i++) a[i] = read();
    for (i = 1; i <= n; i++) {
        ans = (ans + (f[i] = cnt[a[i]])) % MX; f[i] = (f[i] + 1) % MX;
        for (j = a[i]; j; j = (j - 1) & a[i]) cnt[j] = (cnt[j] + f[i]) % MX;
    }
    cout << ans << endl;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值