[BZOJ2655]calc(DP + 拉格朗日插值)

Address

Solution

  • 显然我们有个 DP
  • f [ i ] [ j ] f[i][j] f[i][j] 表示选出 i i i无序的, [ 1 , j ] [1,j] [1,j] 内的互不相同的整数的所有方案乘积之和
  • ∀ j ≥ 0 , f [ 0 ] [ j ] = 1 \forall j\ge 0,f[0][j]=1 j0,f[0][j]=1
  • ∀ i > 0 , f [ i ] [ 0 ] = 0 \forall i>0,f[i][0]=0 i>0,f[i][0]=0
  • ∀ i , j > 0 , f [ i ] [ j ] = f [ i ] [ j − 1 ] + j × f [ i − 1 ] [ j − 1 ] \forall i,j>0,f[i][j]=f[i][j-1]+j\times f[i-1][j-1] i,j>0,f[i][j]=f[i][j1]+j×f[i1][j1]
  • 转移方程就是考察,这 i i i 个数是否包含有 j j j ,来进行转移
  • 答案就是 f [ n ] [ A ] × n ! f[n][A]\times n! f[n][A]×n!
  • 然后你会发现在 n n n A A A 的数据规模下, O ( n A ) O(nA) O(nA) 的朴素 DP 和 O ( n 3 log ⁡ A ) O(n^3\log A) O(n3logA) 的矩阵乘法都过不去
  • 我们大胆猜想 f [ i ] [ j ] f[i][j] f[i][j] 是关于 j j j 的多项式 f [ i ] [ j ] = F i ( j ) f[i][j]=F_i(j) f[i][j]=Fi(j)
  • 可以得到
  • F i ( x ) = F i ( x − 1 ) + x × F i − 1 ( x − 1 ) F_i(x)=F_i(x-1)+x\times F_{i-1}(x-1) Fi(x)=Fi(x1)+x×Fi1(x1)
  • F i ( x ) F_i(x) Fi(x) 的最高次数为 N ( i ) N(i) N(i)
  • 那么 x × F i − 1 ( x − 1 ) x\times F_{i-1}(x-1) x×Fi1(x1) 的次数显然为 N ( i − 1 ) + 1 N(i-1)+1 N(i1)+1
  • F i ( x ) F_i(x) Fi(x) 相当于是 x × F i − 1 ( x − 1 ) x\times F_{i-1}(x-1) x×Fi1(x1) 的前缀和
  • 而一个多项式求前缀和后次数总是会加 1 1 1
  • 所以 N ( i ) = N ( i − 1 ) + 2 N(i)=N(i-1)+2 N(i)=N(i1)+2
  • F 0 ( x ) F_0(x) F0(x) 是常数 1 1 1 ,次数为 0 0 0
  • 所以 N ( i ) = 2 i N(i)=2i N(i)=2i ,即 F i ( x ) F_i(x) Fi(x) 2 i 2i 2i 次多项式
  • f [ n ] [ 0 ] f[n][0] f[n][0] f [ n ] [ 1 ] f[n][1] f[n][1] f [ n ] [ 2 ] f[n][2] f[n][2] … \dots f [ n ] [ 2 n ] f[n][2n] f[n][2n] 2 n + 1 2n+1 2n+1 个多项式点值
  • 通过拉格朗日插值求出 f [ n ] [ A ] f[n][A] f[n][A]
  • 复杂度 O ( n 2 ) O(n^2) O(n2)

Code

// luogu-judger-enable-o2
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define For(i, a, b) for (i = a; i <= b; i++)

const int N = 1005;

int A, n, ZZQ, f[N][N];

int qpow(int a, int b)
{
	int res = 1;
	while (b)
	{
		if (b & 1) res = 1ll * res * a % ZZQ;
		a = 1ll * a * a % ZZQ;
		b >>= 1;
	}
	return res;
}

int Lagrange(int A)
{
	int i, j, res = 0;
	For (i, 0, (n << 1))
	{
		int x1 = 1, x2 = 1;
		For (j, 0, (n << 1)) if (j != i)
		{
			x1 = 1ll * x1 * (A - j + ZZQ) % ZZQ;
			x2 = 1ll * x2 * (i - j + ZZQ) % ZZQ;
		}
		res = (1ll * x1 * qpow(x2, ZZQ - 2) % ZZQ *
			f[n][i] + res) % ZZQ;
	}
	For (i, 1, n) res = 1ll * res * i % ZZQ;
	return res;
}

int main()
{
	int i, j;
	std::cin >> A >> n >> ZZQ;
	For (j, 0, (n << 1)) f[0][j] = 1;
	For (i, 1, n) For (j, 1, (n << 1))
		f[i][j] = (1ll * j * f[i - 1][j - 1] + f[i][j - 1]) % ZZQ;
	std::cout << Lagrange(A % ZZQ) << std::endl;
	return 0;
}
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值