[JLOI2015]bzoj 4005 骗我呢 - 组合数学 - dp

BZOJ 同时被 3 个专栏收录
138 篇文章 0 订阅
35 篇文章 0 订阅
40 篇文章 0 订阅

莫名其妙T了……
考虑朴素dp,设dp[i,j]表示前i行j这个数字没出现,那么显然下一行只能是[j-1,m]的数字没出现,也就是 dp[i,j]=min(j+1,m)k=0dp[i1,k] d p [ i , j ] = ∑ k = 0 m i n ( j + 1 , m ) d p [ i − 1 , k ] ,如果 0<j<m 0 < j < m 那么 dp[i,j]=dp[i,j1]+dp[i1,j+1] d p [ i , j ] = d p [ i , j − 1 ] + d p [ i − 1 , j + 1 ] ,然后那个转移的图画出来,然后人为补充上-1这个点并平移每一行,最后发现就是在这种网格图上向右n+m+1向下n次的方案数。将向右看作+1向下看作-1那么任意时刻前缀和>=0并且<=m+1=(n+m+1)-(n)。
问题转化为求F(n,m)={n个+1和m个-1任意时刻前缀和>=0并且<=n-m的方案数}。
考虑容斥,用总数减去先超过上界(记做<0),再减去先超过下界(记做>n-m),以减去先超过下界为例,可以先减去最后超过下界(<0)的方案(如多次则以最后一次为准),再加上最后是先>n-m再<0的,再减去最后是先< 0然后>n-m然后< 0……
考虑没一个怎么算,具体方法和卡特兰数有点类似:这个过程把序列划分成若干段,从后向前翻转即可。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<assert.h>
#define mod 1000000007
#define lint long long
#define N 20000010
#define A(x,y) (swap(x,y),x--,y++)
#define B(x,y) (swap(x,y),x+=n-m+1,y-=n-m+1)
#define P(x) (x<0?x+=mod:0)
#define Q(x) (x>=mod?x-=mod:0)
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
int f[N],fi[N];
inline int fast_pow(int x,int k,int ans=1)
{   for(;k;k>>=1,x=(lint)x*x%mod) (k&1)?ans=(lint)ans*x%mod:0;return ans;   }
inline int prelude(int n)
{
    for(int i=f[0]=1;i<=n;i++) f[i]=(lint)f[i-1]*i%mod;
    fi[n]=fast_pow(f[n],mod-2);
    for(int i=n-1;i>=0;i--) fi[i]=fi[i+1]*(i+1ll)%mod;
    return 0;
}
inline int C(int n,int m)
{
    if(n<0||m<0||n<m) return 0;
    return (lint)f[n]*fi[m]%mod*fi[n-m]%mod;
}
inline int F(int n,int m,int ans=0)//n +1, m -1;
{
    for(int x=n,y=m;x>=0&&y>=0;)
        A(x,y),ans-=C(x+y,x),P(ans),
        B(x,y),ans+=C(x+y,x),Q(ans);
    for(int x=n,y=m;x>=0&&y>=0;)
        B(x,y),ans-=C(x+y,x),P(ans),
        A(x,y),ans+=C(x+y,x),Q(ans);
    return ans+=C(n+m,n),Q(ans),ans;
}
int main()
{
    prelude(N-1);int n,m;scanf("%d%d",&n,&m);
    return !printf("%d\n",F(n+m+1,n));
}
  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值