[Codeforces 1097F]Alex and a TV Show(bitset + 莫比乌斯反演)

Address

Solution

  • 发现我们要查询的是某集合内某数的出现次数模 2 2 2 的结果
  • 可以对于每个可重集维护一个 bitset ,第 i i i 个集合的 bitset 第 j j j 位表示第 i i i 个集合中 j j j 的出现次数的奇偶性
  • 但我们发现这样做无法解决第 3 3 3 种操作
  • 我们不妨把维护的东西换一下
  • A [ i ] [ j ] A[i][j] A[i][j] 表示第 i i i 个集合内 j j j 的倍数的个数的奇偶性
  • 对于 1 1 1 操作,直接将所有 v v v 的约数 k k k A [ v ] [ k ] = 1 A[v][k]=1 A[v][k]=1 ,其他的 k k k A [ v ] [ k ] A[v][k] A[v][k] 改成 0 0 0 即可
  • 对于 2 2 2 操作显然还是 A [ x ] ← A [ y ] ⨁ A [ z ] A[x]\leftarrow A[y]\bigoplus A[z] A[x]A[y]A[z] ,其中 ⨁ \bigoplus 为异或运算
  • 对于 3 3 3 操作,显然 x ∣ gcd ⁡ ( a , b ) x|\gcd(a,b) xgcd(a,b) 当且仅当 x ∣ a x|a xa x ∣ b x|b xb 。于是 A [ x ] ← A [ y ] & A [ z ] A[x]\leftarrow A[y]\& A[z] A[x]A[y]&A[z] & \& & 为与运算
  • 而对于 4 4 4 ,我们如何在知道 A [ x ] A[x] A[x] 的情况下知道第 x x x 个集合中 v v v 的个数的奇偶性呢?
  • 对于 A [ x ] A[x] A[x] ,进行莫比乌斯反演,得
  • a n s = ∑ v ∣ k A [ x ] [ k ] μ ( k v ) ans=\sum_{v|k}A[x][k]\mu(\frac kv) ans=vkA[x][k]μ(vk)
  • 由于我们只关心奇偶性,所以我们可以把 μ \mu μ 的值看成只有 0 0 0 1 1 1 两种
  • 再开 bitset μ [ v ] [ k ] \mu[v][k] μ[v][k] 表示:如果 v ∣ k v|k vk μ [ v ] [ k ] = ∣ μ ( k v ) ∣ \mu[v][k]=|\mu(\frac kv)| μ[v][k]=μ(vk) ,否则 μ [ v ] [ k ] = 0 \mu[v][k]=0 μ[v][k]=0
  • 这样询问结果就是 A [ x ] & m u [ v ] A[x]\& mu[v] A[x]&mu[v] 1 1 1 的个数的奇偶性
  • 复杂度 O ( ( n + q + v ) v 64 ) O(\frac {(n+q+v)v}{64}) O(64(n+q+v)v)

Code

#include <bits/stdc++.h>

inline int read()
{
	int res = 0; bool bo = 0; char c;
	while (((c = getchar()) < '0' || c > '9') && c != '-');
	if (c == '-') bo = 1; else res = c - 48;
	while ((c = getchar()) >= '0' && c <= '9')
		res = (res << 3) + (res << 1) + (c - 48);
	return bo ? ~res + 1 : res;
}

const int N = 1e5 + 5, M = 7005;

int n, q, miu[M], tot, pri[M];
bool mark[M];

std::bitset<M> times[N], fy[M];

void sieve()
{
	mark[0] = mark[miu[1] = 1] = 1;
	for (int i = 2; i <= 7000; i++)
	{
		if (!mark[i]) miu[pri[++tot] = i] = 1;
		for (int j = 1; j <= tot; j++)
		{
			if (i * pri[j] > 7000) break;
			mark[i * pri[j]] = 1;
			if (i % pri[j] == 0) break;
			else miu[i * pri[j]] = miu[i];
		}
	}
	for (int i = 1; i <= 7000; i++)
		for (int j = i; j <= 7000; j += i)
			fy[i][j] = miu[j / i];
}

int main()
{
	n = read(); q = read();
	sieve();
	int op, x, y, z;
	while (q--)
	{
		op = read(); x = read(); y = read();
		if (op == 1)
		{
			int S = sqrt(y);
			times[x] = 0;
			for (int i = 1; i <= S; i++)
			{
				if (y % i) continue;
				times[x][i] = times[x][y / i] = 1;
			}
		}
		else if (op == 2) z = read(), times[x] = times[y] ^ times[z];
		else if (op == 3) z = read(), times[x] = times[y] & times[z];
		else printf("%d", (times[x] & fy[y]).count() & 1);
	}
	return puts(""), 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值