算法
xyz599
这个作者很懒,什么都没留下…
展开
-
Power Bundle Adjustment for Large-Scale 3D Reconstruction 阅读
PowerBA新颖点在于提高上式(12)中dX_p= S_{-1}*(-b)的计算效率。提高原理:如下所示:将矩阵的求逆计算转换为矩阵的乘加计算。原创 2023-06-21 13:11:13 · 183 阅读 · 0 评论 -
内外参标定系列
1、标定系列一 | 机器人手眼标定的基础理论分析https://zhuanlan.zhihu.com/p/931837882、标定系列二 | 实践之Camera-Odometry标定https://zhuanlan.zhihu.com/p/1017271513、Camera-2dLidar标定https://blog.csdn.net/heyijia0327/article/details/850009434、2d Laser 和 Odomter 内外参数标定工具原理及使用方法h原创 2020-08-17 10:16:00 · 386 阅读 · 0 评论 -
fbow的坑
1、同一数据集,多次训练出的结果存在差异;2、voc.size()返回的结果时父节点数量,而不是 子节点(单词)数量;3、没有提供子节点(单词)的结果、词典层数的接口;4、单词的ID ,存在单词Id 大于总单词数的问题5、fBow a=transform(cv::Mat); 与 tranform(cv::Mat,int,fBow a,fBow2 b); 运行出的 a 中 单词权重不一致;修复:https://github.com/xyz599/fbow-mod...原创 2020-06-15 11:06:48 · 1543 阅读 · 1 评论 -
DWA(dynamic window approach)
DWA算法主要原理是结合移动机器人的运动模型,在速度窗口集合中(v,w)遍历线速度、角速度,模拟计算这些速度在一定时间内的运动轨迹,在通过评价函数对轨迹进行评分,评分最高的为当前下发给扫地机运行的线速度和角速度。运动模型如下:...原创 2020-05-29 16:47:17 · 1336 阅读 · 0 评论 -
狗腿算法整理
我们遇到的大多数是一些实际的问题,这门课是我们学校数学学院开的,原教材里讲了很多原理推导,我这儿就不再累述了,直接讲算法的框架和运用。(1)优化算法的目的是:min f(xk+p),pk为下降方向。 f(xk+p)可以用泰勒公式展开为 (2)其中tao 的求法 if p_u'*p_u > pars原创 2017-01-11 15:54:25 · 6756 阅读 · 1 评论 -
navigation stack 中amcl 源码解读
amcl运用在地图地位中的算法(见Probabilistic Robotics )再熟悉源码的时候需要弄清楚几个结构体所包含原创 2016-10-27 09:21:15 · 7061 阅读 · 2 评论 -
graph slam学习:g2o
转载自点击打开链接1. graph_slam 学习 关于graph-slam的学习详细参照教材> 2005版 第11章 图优化实际上是解一种非线性最小二乘问题,主要用于离线的slam优化,也有用在在线的方式的。 最小二乘解决的就是偏差全局最小的问题,再在原基础量上叠加最小偏差量即为最优量。 图优化将问题全部抽象成 node(点)与edge(边)转载 2016-12-02 17:00:28 · 2130 阅读 · 0 评论 -
梯度法
梯度下降法博客分类:数学与计算 一、基本概念梯度下降法,就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减小。梯度下降法是2范数下的最速下降法。最速下降法的一种简单形式是:x(k+1)=x(k)-a*g(k),其中a称为学习速率,可以是较小的常数。g(k)是x(k)的梯度。二、导数(1)定义 设有定义域和取值都在实数域原创 2016-11-18 09:57:47 · 3178 阅读 · 0 评论 -
牛顿法
平时经常看到牛顿法怎样怎样,一直不得要领,今天下午查了一下维基百科,写写我的认识,很多地方是直观理解,并没有严谨的证明。在我看来,牛顿法至少有两个应用方向,1、求方程的根,2、最优化。牛顿法涉及到方程求导,下面的讨论均是在连续可微的前提下讨论。 1、求解方程。并不是所有的方程都有求根公式,或者求根公式很复杂,导致求解困难。利用牛顿法,可以迭代求解。原理是利用泰勒公式,在x0处展开,原创 2016-11-18 09:49:22 · 457 阅读 · 0 评论 -
LM算法
转自点击打开链接什么是最优化,可分为几大类?答:Levenberg-Marquardt算法是最优化算法中的一种。最优化是寻找使得函数值最小的参数向量。它的应用领域非常广泛,如:经济学、管理优化、网络分析、最优设计、机械或电子设计等等。根据求导数的方法,可分为2大类。第一类,若f具有解析函数形式,知道x后求导数速度快。第二类,使用数值差分来求导数。根据 使用模型不同,分为非约原创 2016-11-18 09:17:11 · 21783 阅读 · 0 评论 -
熟悉 概率 卡尔曼 粒子滤波
协方差的意义和计算公式(http://www.cnblogs.com/ywl925/archive/2013/07/24/3210822.html)如何通俗易懂地解释「协方差」与「相关系数」的概念?(https://www.zhihu.com/question/20852004)转载 2016-10-24 15:37:11 · 664 阅读 · 0 评论