PoseTrack数据集 百度网盘下载

本文提供了一个难以访问的数据集PoseTrack的下载链接。该数据集对于姿态跟踪研究非常重要,包含2017年和2018年的版本,文件大小分别为30GB和80GB。文中还给出了正确的解压命令。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PoseTrack是姿态跟踪的标准数据集,最近想下载下来进行模型训练,但是发现PoseTrack官网的链接打不开了,不知道是咋回事。。。因此搜索了一下找到了该数据集的磁力链,但是迅雷下的也挺难受的,好不容易下下来了,上传到了百度网盘,有需要的朋友可以下载。
链接在文章最后。
跟human36数据集类似,它也是分卷压缩的,2017是30g,2018是80g,如下图所示:
PoseTrack2017
解压的时候采用以下命令(PoseTrack2018):

cat posetrack18_images.tar.a* | tar -x

一个个解压会报错:
在这里插入图片描述
解压后如下:
在这里插入图片描述
百度网盘链接:
链接:https://pan.baidu.com/s/1qkiOiwbJurPAVXcogNWy-g?pwd=s4pt 
提取码:s4pt

### PoseTrack 数据集下载与使用 #### 下载方法 PoseTrack 是一个人体姿态估计的数据集,提供了多视角的视频序列以及标注的人体关键点位置。为了获取该数据集,访问官方网站[^4]并遵循页面上的指示进行注册和申请。 一旦获得权限,可以通过官方提供的链接直接下载所需资源。通常情况下,数据集分为训练集、验证集和测试集三个部分,分别用于模型训练、超参数调整及最终性能评估。 #### 安装依赖库 对于 Python 用户来说,建议创建一个新的虚拟环境来管理项目所需的包: ```bash conda create -n posetrack python=3.8 conda activate posetrack pip install numpy opencv-python matplotlib torch torchvision torchaudio mmpose ``` 安装 `mmpoe` 可以为后续操作提供便利的支持工具[^2]。 #### 准备配置文件 在开始之前,需准备好必要的配置文件以指导数据加载过程中的各项设置。这些配置可以参照 MMPose 提供的例子来进行修改适配自己的需求。具体路径如下所示: ```plaintext configs/ ├── _base_ │ ├── datasets │ │ └── posetrack.py │ └── models │ └── posewarper.py └── posetrack_2d_kpt_sview_rgb_img_topdown_heatmap_coco_wholebody.py ``` 其中 `_base_/datasets/posetrack.py` 文件定义了如何读取原始图片及其标签;而顶层目录下的 `.py` 则包含了整个实验流程的具体安排,比如使用的骨干网络架构等信息。 #### 加载数据集 MMPose 中已经实现了针对 PoseTrack 的 DataLoader 接口,因此可以直接利用现有的类快速构建自定义的数据管道。下面是一个简单的例子展示怎样实例化一个基于 PyTorch 的 Dataloader 对象: ```python from mmcv import Config from mmpose.datasets import build_dataset, build_dataloader cfg = Config.fromfile('path/to/config/file') train_dataset = build_dataset(cfg.data.train) data_loader = build_dataloader( train_dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=workers_per_gpu, dist=False, shuffle=True) ``` 这段代码会按照给定配置自动完成从磁盘到内存再到 GPU 上张量形式的一系列转换工作,并且支持批量处理样本以便于高效地喂入神经网络中学习特征表示。 #### 进行推理或训练 当一切准备工作就绪之后,就可以着手编写具体的逻辑实现想要的功能了——无论是仅做一次性的预测还是长时间迭代优化权重参数。这里给出一段基础模板帮助理解整体框架结构: ```python import time import torch.nn as nn from tqdm import tqdm model = ... # 初始化模型对象 criterion = nn.MSELoss() # 或者其他损失函数 optimizer = optim.Adam(model.parameters(), lr=learning_rate) for epoch in range(num_epochs): model.train() running_loss = 0. start_time = time.time() pbar = tqdm(data_loader) for i, data_batch in enumerate(pbar): inputs, labels = data_batch['img'].cuda(), data_batch['target'].cuda() optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() avg_loss = running_loss / (i + 1) elapsed_time = int(time.time() - start_time) pbar.set_description(f'Epoch [{epoch+1}/{num_epochs}] Loss: {avg_loss:.4f} Time Elapsed:{elapsed_time}s') print('Finished Training.') ``` 此段脚本展示了标准的监督式机器学习循环模式,即每次遍历所有可用批次更新一次全局统计量直至达到预定轮次结束为止。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值