国王【状压dp】

该博客探讨了在一个n×n的棋盘上放置k个国王,使得他们无法互相攻击的方案数量。通过使用状态压缩动态规划(状压DP)方法,博主解释了如何设置状态f[i][j][k]来表示第i行、第j个状态和k个国王的方案数,并利用位运算判断不同状态的合法性。文章提供了样例输入和输出,以及数据范围,并给出了关键的解决方案思路。
摘要由CSDN通过智能技术生成

题目描述

原题来自:SGU 223
n × n n×n n×n 的棋盘上放 k k k 个国王,国王可攻击相邻的 8 8 8个格子,求使它们无法互相攻击的方案总数。

输入

只有一行,包含两个整数 n n n k k k

输出

每组数据一行为方案总数,若不能够放置则输出 00。

样例输入

【样例输入1】
3 2
【样例输入2】
4 4

样例输出

【样例输出1】
16
【样例输出2】
79

数据范围与提示

对于全部数据, 1 ≤ n ≤ 10 , 0 ≤ k ≤ n 2 1≤n≤10,0≤k≤n^2 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值