引 言
近年来,人工智能(AI)大模型在计算机科学领域引起了广泛的兴趣和关注。这些模型以其庞大的参数规模和卓越的性能,在各种领域展现了巨大的潜力。本论文探讨AI大模型的定义、使用方法、发展历程、主要内容、优势以及当前最广泛的应用。
一、AI大模型是什么?
AI大模型是指具有大量参数和复杂结构的人工智能模型。这些模型通过深度学习技术,能够从大规模数据中学习并提取复杂的模式和规律。AI大模型通常由数百万到数十亿个参数组成,其中包含了丰富的信息和知识,使得模型能够在各种任务上展现出色的性能(Liang等,2022;张乾君,2023)。
AI大模型是一种具有大量参数和复杂结构的人工智能模型。这些模型通过深度学习技术,能够从大规模数据中学习并提取复杂的模式和规律。随着近年来深度学习技术的迅速发展,以及计算能力的不断提升,AI大模型已经成为人工智能领域的重要发展方向之一,对各种任务的处理性能都表现出色。AI大模型的使用方法相对简单,主要包括数据准备、模型选择、模型训练、模型评估和模型部署等步骤。通过这些步骤,可以将AI大模型应用于各种领域,如自然语言处理、图像识别、语音识别等,从而实现各种任务的自动化处理。AI大模型的主要内容包括模型架构、参数规模、预训练与微调以及应用领域等。这些内容使得AI大模型具有更好的性能、更高的通用性、更快的部署速度和更广泛的应用范围,成为人工智能领域的重要推动力。
目前,AI大模型在自然语言处理领域的应用最为广泛,主要包括文本生成、文本分类、语义理解、机器翻译和信息检索等。这些应用为各种实际问题的解决提供了有效的手段,推动了人工智能技术在社会生活中的广泛应用。
①人工智能/大模型学习路线
②AI产品经理资源合集
③200本大模型PDF书籍
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧LLM面试题合集
二、发展简史
AI大模型的发展主要分为6个主要的阶段,首先是二十一世纪初深度学习的兴起,随着计算机硬件性能的提升和数据规模的增加,深度学习技术开始崭露头角。神经网络模型在图像识别、语音识别等领域取得了突破性进展,引发了学术界和工业界对人工智能的新一轮兴趣。
2017年提出Transformer模型,是一种基于注意力机制的深度学习模型(Vaswani等,2017),标志着注意力机制在深度学习中的重要性,为后续的AI大模型奠定了基础。2018年,基于Transformer架构的自回归式语言模型GPT模型问世,在自然语言处理任务中表现出色,吸引了广泛的关注,成为AI大模型发展的重要标志之一(Radford等,2018)。
2018年底Google提出一种双向编码器表示转换模型,BERT(Bidirectional Encoder Representations from Transformers)模型,BERT模型通过预训练和微调的方式,显著提升了自然语言处理任务的性能,成为自然语言处理领域的重要突破之一(Koroteev,2021)。
近年来,随着计算资源和数据规模的进一步增加,大规模预训练模型如GPT-3、BERT-large等相继问世。这些模型拥有巨大的参数规模和强大的学习能力,成为当前人工智能领域的研究热点。AI大模型在自然语言处理、图像识别、语音识别等领域的应用逐渐拓展,并涉及到更多的应用场景和行业。大规模预训练模型不仅在学术研究中取得了重大成就,也在工业界和商业应用中发挥着越来越重要的作用(邓佳文和任福继,2024)。
BERT模型学习过程图示
(Koroteev,2021)
三、AI大模型的使用方式
AI大模型的使用通常包括以下几个步骤:
1.数据准备:准备大规模的训练数据,包括文本、图像、语音等。
2.模型选择:选择适合特定任务的AI大模型,如GPT(生成式预训练)模型用于自然语言处理任务,BERT(双向编码器表示转换)模型用于文本分类任务等。
3.模型训练:使用准备好的数据对选定的AI大模型进行训练,调整模型参数以最大程度地适应特定任务的需求。
4.模型评估:评估训练后的模型在测试数据集上的性能,包括准确率、召回率、F1值等指标。
5.模型部署:将训练好的模型部署到实际应用中,供用户使用。
四、主要内容
AI大模型的核心在于其庞大的参数规模和复杂的神经网络结构,以及通过大规模数据的预训练来获得通用的语言或知识表示。这些特点使得AI大模型能够在各种任务中展现出色的性能,并且具有较高的通用性和灵活性。
AI大模型参数规模庞大。通常由数百万到数十亿个参数组成,这些参数用于存储模型学习到的信息和知识(Brown等,2020)。通过这些参数,模型能够表示复杂的语言结构、图像特征或者其他类型的数据特征,从而实现各种任务的处理。参数的规模越大,模型就能够表示更多、更复杂的信息,从而在各种任务中获得更好的性能。
AI大模型神经网络结构复杂。通常采用深度神经网络结构(Vaswani等,2017),如Transformer架构等(Lu等,2019)。这些网络结构通过多层次的非线性变换和激活函数,能够提取数据中的高阶特征,并建立起特征之间的复杂关系。这种复杂的网络结构使得AI大模型能够学习到更深层次、更抽象的表示,从而实现更复杂的任务处理。
通过大规模数据的预训练来获得通用的语言或知识表示(Brown等,2020)。在预训练阶段,模型通过大规模的文本、图像或者其他类型的数据进行无监督学习,从而学习到通用的语言或知识表示。这些表示能够捕捉数据中的各种模式和规律,从而为后续的任务处理提供了基础。通过预训练,模型可以获得丰富的语言或知识表示,使得其在各种任务上都能取得较好的性能。
五、应用前景
AI大模型相比传统模型有更好的性能、更高的通用性、更快的部署速度和更加广泛的应用范围而使其可以有更光明的应用前景(严昊等,2023;夏润泽和李丕绩,2023),具体表现在以下方面:
1)赋能内容创作,基于视觉语言模型的内容创作得到广泛应用,ChatGPT4.0的问世补全了文字和图片内容,利用多模态模型更强大的推理能力可以实现大型内容创作;
2)革新交互体验,借助AI大模型的语言理解能力,人机交互体验有望获得革命性进步,机器可以更全面的理解人类的指令与需求,并对模拟的内容提供辅助;
3)智能住行,利用AI大模型建立家居设备和汽车电脑的中枢管理,强大的语言模型改善语音交互的质量,提高家居和汽车的智能型和自主性,协助处理日常事务、制定规划控制等;
4)诞生“数字生命”,AI大数据有望实现智能体全方位、全场景的终身学习,具备快速学习、反馈现实和探索世界的能力,有望对多模态数据体进行感知与学习,应用现实。
小 结
AI大模型作为人工智能领域的重要发展方向,具有巨大的潜力和广阔的应用前景。随着技术的不断进步和应用场景的不断拓展,AI大模型将在未来发挥越来越重要的作用,为人类社会带来更多的创新和进步。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓