【RAG 实践】Ollama+RagFlow:本地知识库部署全解析

前言

上一篇[文章]我们介绍了如何利用 Ollama+AnythingLLM 来实践 RAG ,在本地部署一个知识库。借助大模型和 RAG 技术让我可以与本地私有的知识库文件实现自然语言的交互。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

本文我们介绍另一种实现方式:利用 Ollama+RagFlow 来实现,其中 Ollama 中使用的模型仍然是Qwen2

我们再来回顾一下 RAG 常见的应用架构

RagFlow的安装和部署

前置条件
  • CPU >= 4 核

  • RAM >= 16 GB

  • Disk >= 50 GB

  • Docker >= 24.0.0 & Docker Compose >= v2.26.1

安装

克隆仓库

$ git clone https://github.com/infiniflow/ragflow.git   

进入 docker 文件夹,利用提前编译好的 Docker 镜像启动服务器:

$ cd ragflow/docker   $ chmod +x ./entrypoint.sh   $ docker compose -f docker-compose-CN.yml up -d   

这一步注意docker 下载的镜像比较大,要留有足够的存储空间,我这边观察下载了约 10 个 G 左右。

服务器启动成功后再次确认服务器状态:

$ docker logs -f ragflow-server   

这里注意,安装完成后并不是要进入 下面两个地址

  • http://127.0.0.1:9380

  • http://172.18.0.6:9380

而是要进入:http://localhost:80 先注册账号,是下面这个页面

注册登录

在上图的界面中注册,然后登录就来到下面这个页面了

配置 Ollama 连接大模型

如下图我们先配置模型,点击右上角头像,再点击模型提供商

这里我是想连接我本地已经安装部署好的 Ollama ,通过 Ollama 我安装了 Qwen2 大模型,具体的安装步骤在之前的那篇文章里,有需要的可以移步到那里看。

打开Ollama 后, 我是通过服务器模式启动的大模型

ollama serve   

当然你也可以选择其他平台和其他模型,需要提供 API key,API key 的获取就去你所选模型的网站,现在有很多模型的 API 是有免费额度的。

接着我们在 RagFlow 中配置模型,注意由于 RagFlow 我是在 docker 中安装的,所以请求本地部署的 Ollama 地址要用 :http://host.docker.internal:11434

创建知识库

接下来我们就可以创建知识库了

注意这里的文件类型没有 markdown,但我实测 markdown 是可以的。其他的选项,根据你的情况自行设置就好,很简单。

接下来就是上传你的文件了,也比较简单,但我发现上传后文件处理的比较慢,应该是我电脑配置的原因

文件上传并处理完成后,可以通过检索测试看一下文件有没有被正确检索。

至此,如果你上传完成全部的文件,知识库就算创建完毕了。

聊天

接着就到了展示成果的时候了,我们可以根据自己的知识库与模型进行自然语言交互了。

首先注意,在聊天配置中要把 token 设置的大一些,不然回复的内容会很少!我这里把它拉到最大值了。

展示一下成果:

我觉得还算满意。但是由于我笔记本配置一般,也没有显卡支持,所以跑的很慢,真的很慢。但如果部署在有 GPU 的服务器上,企业私有化部署供内部使用,应该会比较快的。

思考

我这里的例子是用个人笔记本电脑上的资料做的个人知识库,对于文档的提问,无论是围绕着摘要总结来做,还是围绕着全文检索,答案看起来还行,也基本能用。但是这是面向个人的或者说面向 C 端 ,如果面向 B 端面向企业单靠向量检索就力不从心了,一来无法对精确信息召回,二来无法与企业内部信息系统集成(大量结构化数据)。所以必须在检索阶段引入多路召回和重排序,保证数据查询的准确度。

企业内部的数据包含各种格式,更复杂的还包含各类图表等,如果在没有理解这些语义的基础之上直接提供 RAG 方案,例如简单的根据文字空白就来切分段落,就会导致语义丢失从而让最终查询的结果也是混乱不堪。

如果解决这个问题呢,除了之前说的多路召回(多跳)和重排序这种方案,目前业界还有其他思路,比如 infiniFlow提出的 Infinity AI原生数据库(https://github.com/infiniflow/infinity)

从上图可以看到,AI原生数据库 不仅涵盖非结构化的内容如文档和图片,也包括结构化的信息系统。对这些信息进行有效整合,并在此基础上实现多路召回机制和最终的融合排序解决方案。

此外,很多AI 产品的上下文现在是越来越长,可能有人会说现在上下文都这么长了,还用得着 RAG 吗?我认为,RAG在知识库问答场景依然是非常必要的。LLM 的长上下文能力,对于 RAG 来说应该是很大的促进。用 OpenAI 联创 Andrej Karpathy 的一张图做个类比,他把 LLM 比喻为一台计算机的 CPU, 把上下文类比为计算机的内存,那么以向量为代表的数据库,就可以看作是这台计算机的硬盘

显然你不可能买一台只有内存的电脑。内存可以很大,但也意味着很贵,并且短时间内替代不了硬盘的作用。

最后是准确性问题,关于这个问题一般有两个方向的解决思路,一种是从 RAG 下手,比如做 Embedding 模型的微调。一种是从 LLM 下手,做 LLM 微调。虽然两种我都没真正做过,但从研读的资料上得知RAG系统在实时性和成本方面相较于LLM微调具有优势,因此更受青睐。这点跟我的直觉一致。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值