pytorch小记(三):pytorch中的最大值操作:x.max()


在 PyTorch 中,x.max(dim=n) 表示沿指定维度 dim 求张量的最大值,并返回 最大值最大值的索引。我们逐步分析 dim=0, dim=1, 和 dim=2 的行为。


初始化张量:

x = torch.arange(8).reshape(2, 2, 2)
print(x)

输出

tensor([[[0, 1],
         [2, 3]],
        [[4, 5],
         [6, 7]]])
  • x 是一个 3D 张量,形状为 (2, 2, 2)
    • 第一维度(dim=0)有 2 个块。
    • 第二维度(dim=1)有 2 行。
    • 第三维度(dim=2)有 2 列。

1. x.max(dim=0)

含义

  • 沿着第 0 维(块的方向)比较,保留 其他维度
  • 比较时,将每个位置的两个块中元素逐个比较,选出最大值。

计算过程

[[0, 1],    [2, 3]]         # 块 0
  |  |       |  |
[[4, 5],    [6, 7]]         # 块 1

我们沿第 0 维比较,即逐个元素比较块 0 和块 1 对应位置的值,得到最大值:

对比每个位置的值:
  • 对位置 [0, 0] 比较:
    块 0: 0, 块 1: 4 => 最大值是 4
    
  • 对位置 [0, 1] 比较:
    块 0: 1, 块 1: 5 => 最大值是 5
    
  • 对位置 [1, 0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值