9 - 无穷级数

9 - 无穷级数

一、基本概念

(一)常数项级数 敛散性的判别

收敛:convergence
发散:divergence

1)正项级数敛散性的判别

正项错级数指级数中各项均 大于等于 0

1. 比较判别法

两个正向级数,从某项起,大的收敛,则小的收敛;小的发散,则大的发散;

极限形式

两个正向级数 ∑ n = 1 ∞ u n ,   ∑ n = 1 ∞ v n ≠ 0 \sum_{n=1}^{\infty}u_n,\ \sum_{n=1}^{\infty}v_n \neq 0 n=1un, n=1vn=0 ,且

lim ⁡ n → ∞ u n v n = A \lim_{n \rightarrow\infty} \frac{u_n}{v_n}=A nlimvnun=A

  • A = 0 A=0 A=0 时, ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn 收敛则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 收敛
  • A = ∞ A=\infty A= 时, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 发散则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 发散
  • 0 < A < ∞ 0<A<\infty 0<A< 时,A = 0 时, ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 有相同的敛散性

A = 0 A=0 A=0 时,说明 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 大很多, A = ∞ A=\infty A= 时相反

2. 比值判别法(达朗贝尔判别法)

正向级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un

lim ⁡ n → ∞ u n + 1 u n = ρ \lim_{n\rightarrow\infty} \frac{u_{n+1}}{u_n}=\rho nlimunun+1=ρ

  • ρ < 1 \rho<1 ρ<1 ,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 收敛
  • ρ > 1 \rho>1 ρ>1 ,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 发散
  • ρ = 1 \rho=1 ρ=1 ,则比值判别法失效
3. 根植判别法(柯西判别法)

正向级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un
lim ⁡ n → ∞ u n n = ρ \lim_{n\rightarrow\infty} \sqrt[n]{u_n}=\rho nlimnun =ρ

  • ρ < 1 \rho<1 ρ<1 ,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 收敛
  • ρ > 1 \rho>1 ρ>1 ,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 发散
  • ρ = 1 \rho=1 ρ=1 ,则根值判别法失效
2)交错级数敛散性的判别

交错级数指级数中 各项的正负交替出现

1. 莱布尼兹判别法

交错级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \sum_{n=1}^{\infty}(-1)^{n-1}u_n n=1(1)n1un u n > 0 u_n>0 un>0 n = 1 , 2 , 3 ⋯ n=1,2,3\cdots n=1,2,3 ,若 { u n } \{u_n\} {un} 单调不增 lim ⁡ n → ∞ u n = 0 \lim_{n\rightarrow \infty}u_n=0 limnun=0 ,则该级数收敛

3)任意项级数敛散性的判别

任意项级数中 各项可正、可负、可零

1. 绝对收敛

∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 为任意项级数,若 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}|u_n| n=1un 收敛,则称 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 绝对收敛

∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}|u_n| n=1un 收敛,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 必收敛

2. 条件收敛

∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 收敛,但 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}|u_n| n=1un 发散,则称 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 条件收敛

绝对值级数原级数敛散性
∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}\lvert u_n\rvert n=1un 收敛 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 必收敛原级数 绝对收敛
∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}\lvert u_n\rvert n=1un 发散 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 收敛原级数 条件收敛

(二)常数项级数的性质

1)线性性

∑ n = 1 ∞ a u n + b v n = a ∑ n = 1 ∞ u n + b ∑ n = 1 ∞ v n \sum_{n=1}^\infty au_n+bv_n=a\sum_{n=1}^\infty u_n + b\sum_{n=1}^\infty v_n n=1aun+bvn=an=1un+bn=1vn

2)改项不变性

一个级数前面去掉或加上 (改变)任意有限项,级数 敛散性不变

3)括号不变性

收敛级数 的项,任意加括号 所得到的新级数仍 收敛,且 和不变

4)排列不变性

若原级数 绝对收敛 ,不论将其各项如何重新排列,多得到的新级数仍 收敛,且 和不变

5)收敛的必要条件

∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 收敛,则 lim ⁡ n → ∞ u n = 0 \lim_{n\rightarrow\infty }u_n=0 limnun=0


(三)函数项级数(与常数项级数相对)

1)函数项级数的概念

∑ n = 1 ∞ u n ( x ) \sum_{n=1}^{\infty}u_n(x) n=1un(x) 是函数项级数,即级数的每一项都是关于 x x x 的函数

x = x 0 x=x_0 x=x0 时,函数项级数变为 常数项级数 ∑ n = 1 ∞ u n ( x 0 ) \sum_{n=1}^{\infty}u_n(x_0) n=1un(x0)

2)收敛点 与 发散点

根据函数项级数的概念,可以知道, x x x 取不同值的时候,得到的常数项级数 敛散性 可能不同

所以常数项级数 ∑ n = 1 ∞ u n ( x 0 ) \sum_{n=1}^{\infty}u_n(x_0) n=1un(x0) 收敛,则 x 0 x_0 x0 为收敛点;反之为发散点

3)收敛域

∑ n = 1 ∞ u n ( x ) \sum_{n=1}^{\infty}u_n(x) n=1un(x) 所有收敛点的集合,称为 ∑ n = 1 ∞ u n ( x ) \sum_{n=1}^{\infty}u_n(x) n=1un(x) 的收敛域

(四)幂级数(一种函数项级数)

1)幂级数的概念

∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + ⋯ \sum_{n=0}^{\infty} a_nx^n=a_0+a_1x+a_2x^2+\cdots n=0anxn=a0+a1x+a2x2+

利用 泰勒公式 可以将函数转化成幂级数

2)幂级数敛散性的判别
1. 阿贝尔定理

幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_nx^n n=0anxn 在点 x = x 1 ( x 1 ≠ 0 ) x=x_1(x_1\neq0) x=x1(x1=0) 处收敛时,对于 ∣ x ∣ < ∣ x 1 ∣ |x|<|x_1| x<x1 ,幂级数 绝对收敛

2. 求解收敛半径

对于 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_nx^n n=0anxn
ρ = lim ⁡ n → ∞ ∣ a n + 1 a n ∣ \rho=\lim_{n\rightarrow \infty}\lvert \frac{a_{n+1}}{a_{n}}\rvert ρ=nlimanan+1
收敛半径 R :
{ 1 ρ , ρ ≠ 0 + ∞ , ρ = 0 0 , ρ = ∞ \begin{cases} \frac1\rho, \qquad &\rho \neq 0 \\ +\infty, &\rho=0 \\ 0, &\rho=\infty \end{cases} ρ1,+,0,ρ=0ρ=0ρ=

此时收敛区间为 ( − R , R ) (-R,R) (R,R) ,单独考察 x = ± R x=\pm R x=±R 处的敛散性来确定 收敛域到底是 ( − R , R ) (-R,R) (R,R) [ − R , R ) [-R,R) [R,R) ( − R , R ] (-R,R] (R,R] 还是 [ − R , R ] [-R,R] [R,R]

3. 幂级数的性质
① 线性性

k ∑ n = 0 ∞ a n x n = ∑ n = 0 ∞ k a n x n k\sum_{n=0}^{\infty} a_nx^n= \sum_{n=0}^{\infty} ka_nx^n kn=0anxn=n=0kanxn

∑ n = 0 ∞ a n x n ± ∑ n = 0 ∞ b n x n = ∑ n = 0 ∞ ( a n ± b n ) x n \sum_{n=0}^{\infty} a_nx^n \pm \sum_{n=0}^{\infty} b_nx^n = \sum_{n=0}^{\infty} (a_n\pm b_n)x^n n=0anxn±n=0bnxn=n=0(an±bn)xn
收敛域为两级数收敛域的交集

② 和函数连续性

幂级数的收敛域内,和函数连续

③ 逐项积分公式

∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_nx^n n=0anxn 的和函数 S ( x ) S(x) S(x) 在其收敛域内可积,且有逐项积分公式:
∫ 0 x S ( t ) d t = ∫ 0 x ( ∑ n = 0 ∞ a n t n ) d t = ∑ n = 0 ∞ a n ∫ 0 x t n d t = ∑ n = 0 ∞ a n ⋅ x n + 1 n + 1 \int^x_0S(t)dt=\int_0^x(\sum_{n=0}^\infty a_nt^n)dt=\sum_{n=0}^\infty a_n\int_0^xt^ndt=\sum_{n=0}^\infty a_n\cdot\frac{x^{n+1}}{n+1} 0xS(t)dt=0x(n=0antn)dt=n=0an0xtndt=n=0ann+1xn+1

积分后 收敛半径 不变,但收敛域可能变大(边界的两个点可能被包含入收敛域)

④ 逐项求导公式

∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_nx^n n=0anxn 的和函数 S ( x ) S(x) S(x) ( − R , R ) (-R,R) (R,R) 可导,且有逐项求导公式:
S ′ ( x ) = ( ∑ n = 0 ∞ a n t n ) ′ = ∑ n = 0 ∞ a n ( x n ) ′ = ∑ n = 0 ∞ a n n x n − 1 S^\prime(x)=(\sum_{n=0}^\infty a_nt^n)^\prime=\sum_{n=0}^\infty a_n(x^n)^\prime=\sum_{n=0}^\infty a_nnx^{n-1} S(x)=(n=0antn)=n=0an(xn)=n=0annxn1

积分后 收敛半径 不变,但收敛域可能变小(边界的两个点可能被排除出收敛域)

二、常用处理技巧

1)调和级数与 P级数

常可以跟调和级数与P级数作比较来判断敛散性,判断发散时也可以借助它们举特例

1. 调和级数

∑ n = 1 ∞ 1 n 发散 ∑ n = 1 ∞ ( − 1 ) n 1 n 收敛 \begin{aligned} &\sum_{n=1}^{\infty} \frac1n \qquad \qquad 发散 \\ &\sum_{n=1}^{\infty} (-1)^n \frac1n \qquad 收敛 \end{aligned} n=1n1发散n=1(1)nn1收敛

2. P级数

∑ n = 1 ∞ 1 n p ⇒ { P ≤ 1 → 发散 P > 1 → 收敛 \sum_{n=1}^\infty\frac1{n^p} \Rightarrow \begin{cases} P \leq1 \rightarrow 发散 \\ P >1 \rightarrow 收敛 \end{cases} n=1np1{P1发散P>1收敛

2)特殊级数值

1.

∑ m = 0 ∞ 1 ( m + 1 ) 2 = π 2 6 \sum_{m=0}^\infty \frac{1}{(m+1)^2}=\frac{\pi^2}{6} m=0(m+1)21=6π2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值