数分-无穷级数

常数项无穷级数@[TOC]

相关概念

  • 级数:将已知数列 a n {a_n} an的各项相加的表达式 ∑ n = 1 ∞ a n \sum_{n=1}^\infty {a_n} n=1an称为常数项无穷级数,简称为常数项级数或级数, a n a_n an称为该级数的通项.

  • S n = ∑ k = 1 n a k S_n=\sum_{k=1}^{n}{a_k} Sn=k=1nak称为上级数的前n项部分和,若部分和数列 S n S_n Sn收敛,则称级数收敛,并称 S = lim ⁡ n → ∞ S n = lim ⁡ n → ∞ ∑ k = 1 n a k S=\lim_ {n \to \infty}{S_n}=\lim_{n \to \infty}{\sum_{k=1}^{n}{a_k}} S=nlimSn=nlimk=1nak
    为它的和,否则,称级数发散.

  • 收敛级数的和与其部分和之差称为该级数的余项.记作 R n R_n Rn

  • 正项级数: 每项都大于零的级数.

  • 变号级数: 若级数中有无穷项为正, 无穷项为负, 则称此类级数为变号级数.

  • 交错级数: 级数各项正负号交替变化.

相关性质

  • 级数性质: 设 ∑ n = 1 ∞ a n = a , ∑ n = 1 ∞ b n = b \sum_{n=1}^\infty a_n=a, \sum_{n=1}^\infty b_n=b n=1an=a,n=1bn=b, 则其有以下性质:
    • ∑ n = 1 ∞ ( a n ± b n ) = a + b = ∑ n = 1 ∞ a n + ∑ n = 1 ∞ b n \sum_{n=1}^\infty (a_n\pm b_n)=a+b=\sum_{n=1}^\infty a_n+\sum_{n=1}^\infty b_n n=1(an±bn)=a+b=n=1an+n=1bn
    • ∑ n = 1 ∞ C a n = C a = C ∑ n = 1 ∞ a n \sum_{n=1}^\infty Ca_n=Ca=C\sum_{n=1}^\infty a_n n=1Can=Ca=Cn=1an
    • a n > b n , 则 a > b a_n>b_n, 则 a>b an>bn,a>b
  • 收敛级数中删去,添加任意有限项, 收敛性不变
    推论: S n = ∑ i = 1 ∞ a n , T n = ∑ i = 1 n a k + i , 其 中 , S n 和 T n 的 敛 散 性 相 同 . S_n=\sum_{i=1}^\infty a_n, T_n=\sum_{i=1}^n a_{k+i}, 其中, S_n和T_n的敛散性相同. Sn=i=1an,Tn=i=1nak+i,,SnTn.
  • ∑ n = 1 ∞ a n 收 敛 , 则 lim ⁡ n → ∞ a n = 0 lim ⁡ n → ∞ R n = 0 , 且 互 为 充 要 条 件 \sum_{n=1}^\infty a_n 收敛, 则\lim_{n\to \infty}a_n=0 \\ \lim_{n\to \infty}R_n=0, 且互为充要条件 n=1an,nliman=0nlimRn=0,(柯西收敛原理)
  • 收敛级数再不改变其各项任意加入括号后得到的新级数仍收敛, 且和不变. 反之不成立, 即加括号收敛的级数去掉括号后不一定收敛.
  • Cauchy收敛原理: 级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty}a_n n=1an收敛的充要条件是 ∀ ε > 0 , ∃ N ∈ N ∗ , 使 得 ∀ p ∈ N ∗ , 当 n > N 时 , ∣ ∑ k = n + 1 n + p a k ∣ < ε \forall \varepsilon >0, \exist N \in \large{N_*}, 使得\forall p \in N_*, 当n>N时, |\sum_{k=n+1}^{n+p}a_k|<\varepsilon ε>0,NN,使pN,n>N,k=n+1n+pak<ε
  • 正项级数部分和数列递增.
  • 若正项级数部分和数列有界, 则可以推出其收敛.
  • a n , b n a_n, b_n an,bn为正项数列, 且 a n > b n a_n>b_n an>bn则, 若 a n a_n an收敛, 则 b n b_n bn收敛, 若 b n b_n bn发散, 则 a n a_n an发散.
  • a n , b n a_n, b_n an,bn为正项数列, 且 ∀ n ∈ N + , b n > 0 , lim ⁡ n → ∞ a n b n = λ \forall n\in N_+, b_n>0,\lim_{n\to \infty}\frac{a_n}{b_n}=\lambda nN+,bn>0,limnbnan=λ
    1). λ > 0 , a n , b n \lambda>0,a_n,b_n λ>0,an,bn同敛散.
    2). λ = 0 , b n 收 敛 则 a n 收 敛 \lambda=0, b_n收敛则a_n收敛 λ=0,bnan
    3). λ → ∞ , b n 发 散 则 a n 发 散 \lambda\to \infty, b_n发散则a_n发散 λ,bnan.
  • 积分准则: a n a_n an为正项数列, 若存在一个单调减的非负连续函数 f : [ 1 , + ∞ ) → ( 0 , + ∞ ) f:[1,+\infty)\to (0,+\infty) f:[1,+)(0,+), 使 f ( n ) = a n f(n)=a_n f(n)=an, 则级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an与无穷积分 ∫ 1 ∞ f ( x ) d x \int_1^\infty f(x)dx 1f(x)dx同敛散.
  • D’Alembert准则: 设 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an为正项级数, 且 lim ⁡ n → ∞ a n + 1 a n = λ \lim_{n\to \infty}\frac{a_{n+1}}{a_n}=\lambda nlimanan+1=λ
    1). 若 λ < 1 \lambda<1 λ<1,则级数收敛
    2). 若 λ > 1 ( 含 + ∞ ) \lambda>1(含+\infty) λ>1(+), 则级数发散.
  • Cauchy准则: 设 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty}a_n n=1an为正项级数, lim ⁡ n → ∞ a n n = λ \lim_{n\to \infty}\sqrt[n]{a_n}=\lambda nlimnan =λ
    1). 若 λ < 1 \lambda<1 λ<1 级数收敛
    2). 若 λ > 1 ( 含 + ∞ ) \lambda>1(含+\infty) λ>1(+), 级数发散.
  • Leibniz准则: 设交错级数 ∑ n = 1 ∞ ( − 1 ) n − 1 a n , ∀ n ∈ N , a n > = a n − 1 , a n > 0 , lim ⁡ n → ∞ a n = 0 \sum_{n=1}^\infty (-1)^{n-1}a_n , \forall n\in {\bf N}, a_n>=a_{n-1}, a_n>0, \lim_{n\to \infty}a_n=0 n=1(1)n1an,nN,an>=an1,an>0,nliman=0, 则该级数收敛, 且 ∣ S − S n ∣ < = a n + 1 , S < = a 1 |S-S_n|<=a_{n+1},S<=a_1 SSn<=an+1,S<=a1
    也就是说, 若交替级数满足莱布尼兹准则, 则其和S不超过级数的首项.
    • 证明思想: 数列有单调性且正负交替, 因此可进行分块(加括号)变成正项数列或求解某些问题.
  • 绝对收敛准则:若级数 ∑ n = 1 ∞ ∣ a n ∣ \sum_{n=1}^\infty |a_n| n=1an收敛, 则级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an收敛, 该定理的逆命题不成立. 若级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an的绝对值级数 ∑ n = 1 ∞ ∣ a n ∣ \sum_{n=1}^\infty |a_n| n=1an收敛, 称级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an绝对收敛, 若级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an收敛但其绝对值级数发散, 称 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an条件收敛,
  • 若级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an绝对收敛, 则任意交换它的各项次序得到的级数也绝对收敛, 且和不变.
  • 两个绝对收敛的级数的积也绝对收敛,积的和为和的积.

举例

  • 等比级数 a n = a q n , ∑ n = 0 ∞ a n a_n=aq^n, \sum_{n=0}^\infty a_n an=aqn,n=0an, 其级数为当 ∣ q ∣ > 1 |q|>1 q>1时, 等比级数发散, 当 ∣ q ∣ < 1 |q|<1 q<1时, 和为 a 1 − q \frac{a}{1-q} 1qa
  • 调和级数: 1 + 1 2 + . . . + 1 n + . . . 1+\frac{1}{2}+...+\frac{1}{n}+... 1+21+...+n1+...
    发散证明:
    1). 利用反证法:若调和级数 a n a_n an收敛于S, 则数列 S 2 n S_{2n} S2n也收敛于S, 即 S 2 n − S n = S − S = 0 S_{2n}-S_n=S-S=0 S2nSn=SS=0, 而 S 2 n − S n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n > n 2 n = 1 2 S_{2n}-S_n=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}>\frac{n}{2n}=\frac{1}{2} S2nSn=n+11+n+21+...+2n1>2nn=21
    故调和数列发散.
    2). 比较审敛法:
    1 + 1 2 + . . . + 1 n + . . . < 1 + 1 2 + ( 1 4 + 1 4 ) + ( 1 8 + 1 8 + 1 8 + 1 8 ) + . . . = 1 + 1 2 + 1 2 + 1 2 + . . . = ∞ 1+\frac{1}{2}+...+\frac{1}{n}+...<1+\frac{1}{2}+(\frac{1}{4}+\frac{1}{4})+(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8})+...=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...=\infty 1+21+...+n1+...<1+21+(41+41)+(81+81+81+81)+...=1+21+21+21+...=
  • 调和级数的交错级数: 1 − 1 2 + 1 3 − . . . + 1 2 n − 1 − 1 2 n + . . . = l n 2 1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{2n-1}-\frac{1}{2n}+...=ln2 121+31...+2n112n1+...=ln2
  • 常用函数项级数1. 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n , x ∈ ( − 1 , 1 ) \frac{1}{1+x}=\sum_{n=0}^\infty(-1)^nx^n, x\in(-1,1) 1+x1=n=0(1)nxn,x(1,1)
  • 常用函数项级数2.
    l n ( x + 1 ) = ∑ n = 0 ∞ ( − 1 ) n x n + 1 n + 1 , x ∈ ( − 1 , 1 ] ln(x+1)=\sum_{n=0}^\infty(-1)^n\frac{x^{n+1}}{n+1},x\in(-1,1] ln(x+1)=n=0(1)nn+1xn+1,x(1,1]
  • 常用函数项级数3
    1 1 − x = ∑ n = 0 ∞ x n , x ∈ ( − 1 , 1 ) \frac{1}{1-x}=\sum_{n=0}^\infty x^n, x\in(-1,1) 1x1=n=0xn,x(1,1)
  • 常用函数项级数4.
    e x = ∑ n = 0 ∞ x n n ! e^x=\sum_{n=0}^\infty \frac{x^n}{n!} ex=n=0n!xn
  • 常用函数项级数5
    s i n x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! sinx=\sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{(2n+1)!} sinx=n=0(1)n(2n+1)!x2n+1
    c o s x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! cosx=\sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!} cosx=n=0(1)n(2n)!x2n
  • 常用函数项技术6
    l n ( 1 − x ) = − ∑ n = 1 ∞ x n n ln(1-x)=-\sum_{n=1}^\infty\frac{x^n}{n} ln(1x)=n=1nxn
  • 幂级数展开: ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + . . . + a ( a − 1 ) . . . ( a − n + 1 ) n ! x n + . . . (1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+...+\frac{a(a-1)...(a-n+1)}{n!}x^n+... (1+x)a=1+ax+2!a(a1)x2+...+n!a(a1)...(an+1)xn+...

其他例题

利用柯西收敛原理:1, 2. 利用达朗贝尔准则:利用放缩:3, 4, 6, 7,

  1. 求 ∑ n = 1 ∞ 1 n 2 的 敛 散 性 . 求\sum_{n=1}^{\infty}\frac{1}{n^2}的敛散性. n=1n21.
    证:根据柯西收敛原理, 只需证明 ∑ k = n + 1 n + p a k \sum_{k=n+1}^{n+p}a_k k=n+1n+pak收敛即可.
    ∑ k = n + 1 n + p a k = 1 ( n + 1 ) 2 + 1 ( n + 2 ) 2 + . . . + 1 ( n + p ) 2 < 1 n ( n + 1 ) + 1 ( n + 1 ) ( n + 2 ) + . . . + 1 ( n + p − 1 ) ( n + p ) = 1 n − 1 n + p < 1 n \sum_{k=n+1}^{n+p}a_k=\frac{1}{(n+1)^2}+\frac{1}{(n+2)^2}+...+\frac{1}{(n+p)^2}<\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}+...+\frac{1}{(n+p-1)(n+p)}\\ =\frac{1}{n}-\frac{1}{n+p}<\frac{1}{n} k=n+1n+pak=(n+1)21+(n+2)21+...+(n+p)21<n(n+1)1+(n+1)(n+2)1+...+(n+p1)(n+p)1=n1n+p1<n1
  2. a 1 ≥ a 2 ≥ a 3 ≥ . . . ≥ a n ≥ 0 a_1\geq a_2\geq a_3\geq...\geq a_n\geq0 a1a2a3...an0, 且 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty}a_n n=1an收敛, 求证: lim ⁡ n → ∞ n a n → 0 \lim_{n\to \infty}na_n\to 0 limnnan0.
    分析: a n a_n an收敛, 故可通过柯西收敛定理得出 a n + 1 + a n + 2 + . . . a 2 n < ε a_{n+1}+a_{n+2}+...a_{2n}<\varepsilon an+1+an+2+...a2n<ε, 在进行放缩, 得 2 n a 2 n ≥ 2 ε 2na_{2n}\geq2\varepsilon 2na2n2ε再放缩得到奇数项也满足趋近于零, 命题得证.
  3. 讨论 ∑ n = 3 ∞ n + 1 n 2 − n − 3 \sum_{n=3}^\infty \frac{n+1}{n^2-n-3} n=3n2n3n+1的敛散性.
    分析: 通过因式分解及放缩将原式放缩到某调和级数.
  4. 已知 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty}a_n n=1an收敛且为正项级数, 求证 ∑ n = 1 ∞ a n a n + 1 , ∑ n = 1 ∞ a n 2 , ∑ n = 1 ∞ a n n \sum_{n=1}^{\infty}\sqrt{a_na_{n+1}}, \sum_{n=1}^{\infty}{a_n}^2,\sum_{n=1}^\infty \frac{\sqrt a_n}{n} n=1anan+1 ,n=1an2,n=1na n分别收敛.
    分析: 第一个和第三个都可通过基本不等式进行放缩, 第二个直接 n > N n>N n>N时, a n < 1 , a n 2 < a n a_n<1, a_n^2<a_n an<1,an2<an而命题得证.
  5. 判别 ∑ n = 1 ∞ [ 1 n − l n ( 1 + 1 n ) ] \sum_{n=1}^{\infty}[\frac{1}{n}-ln(1+\frac{1}{n})] n=1[n1ln(1+n1)]的敛散性.
    分析: 将对数通过泰勒公式分解, 得到其与 1 n 2 \frac{1}{n^2} n21同阶, 而 1 n 2 \frac{1}{n^2} n21收敛, 故原级数收敛.
  6. 判别 ∑ n = 1 ∞ 1 n ! \sum_{n=1}^\infty \frac{1}{n!} n=1n!1的敛散性.
    分析: 放缩成可裂项相消的形式即可.
  7. 判别 ∑ n = 1 ∞ 2 + ( − 1 ) n 2 n \sum_{n=1}^\infty \frac{2+(-1)^n}{2^n} n=12n2+(1)n的敛散性.
    分析: 首先利用比值法进行判别, 发现当n分别为奇数和偶数时 λ \lambda λ的值分别小于1和大于1, 比值法失效, 此时, 直接用放缩法进行判别即可.
  8. lim ⁡ n → ∞ n a n = a > 0 \lim_{n\to \infty}na_n=a>0 limnnan=a>0, 求证 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an发散.
    分析:设 ε = a 2 \varepsilon=\frac{a}{2} ε=2a, 利用极限的定义加绝对值不等式, 求得 a n a_n an的关系式.
  9. 已知 ∑ n = 1 ∞ ( a 2 n − 1 + a 2 n ) \sum_{n=1}^{\infty}(a_{2n-1}+a_{2n}) n=1(a2n1+a2n)收敛, 且 lim ⁡ n → ∞ a n = + ∞ \lim_{n\to \infty}a_n =+\infty limnan=+, 求证 a n a_n an收敛.
    分析: 直接将 a 2 n − 1 + a 2 n a_{2n-1}+a_{2n} a2n1+a2n的和写出来, 发现就是 a n a_n an的和, 直接加 a 2 n + 1 a_{2n+1} a2n+1即可.
  10. ∑ n = 1 ∞ a n , ∑ n = 1 ∞ b n \sum_{n=1}^\infty a_n, \sum_{n=1}^\infty b_n n=1an,n=1bn收敛, a n < = c n < = b n a_n<=c_n<=b_n an<=cn<=bn, 求证 c n c_n cn收敛.
    分析: 由于题目中为声明其为正项数列, 但给出了不等式关系, 因此可由不等式关系构造出正项数列, 再通过级数性质的到 c n c_n cn敛散性.
  11. ∑ n = 1 ∞ ∫ 0 1 n x 1 + x 2 \sum_{n=1}^\infty \int_0^\frac{1}{n}\frac{\sqrt x}{1+x^2} n=10n11+x2x 的敛散性.
    分析: 对于级数通项中含有积分的可以尝试放缩, 本题中直接将分母去掉, 进行放大, 再积分.
  12. ∑ n = 1 ∞ ( l n n ) 2 n 7 6 \sum_{n=1}^\infty \frac{(ln n)^2}{n^{\frac{7}{6}}} n=1n67(lnn)2的敛散性.
    分析: 对于 ∑ n = 1 ∞ ( l n n ) m n p \sum_{n=1}^\infty \frac{(lnn)^m}{n^p} n=1np(lnn)m类型的级数, 有以下结论:
    ∑ n = 1 ∞ ( l n n ) m n p { 收 敛 p>1 , 发 散 p<1 , \sum_{n=1}^\infty \frac{(lnn)^m}{n^p}\begin {cases} 收敛 & \text{p>1}, \\ 发散 & \text{p<1}, \end {cases} n=1np(lnn)m{p>1,p<1,
  13. ∑ n = 1 ∞ n + 2 − n − 2 n λ \sum_{n=1}^\infty \frac{\sqrt{n+2}-\sqrt{n-2}}{n^\lambda} n=1nλn+2 n2 的敛散性.
    分析: 考虑求其同阶量的敛散性, 因为其分子为相减, 将分子化简到分母, 再求同阶量即可.
  14. ∑ n = 1 ∞ l n ( n + 2 ) ( a + 1 n ) n \sum_{n=1}^\infty \frac{ln(n+2)}{(a+\frac{1}{n})^n} n=1(a+n1)nln(n+2)的敛散性.
    分析: 利用柯西准则, 再进行极限运算.
  15. ∑ n = 1 ∞ n n + 1 n ( n + 1 n ) n \sum_{n=1}^\infty \frac{n^{n+\frac{1}{n}}}{(n+\frac{1}{n})^n} n=1(n+n1)nnn+n1敛散性.
  16. a n > 0 , a n + 1 < a n , ∑ n = 1 ∞ ( − 1 ) n − 1 a n a_n>0, a_{n+1}<a_n, \sum_{n=1}^\infty (-1)^{n-1}a_n an>0,an+1<an,n=1(1)n1an发散, 求证 ∑ n = 1 ∞ 1 1 + a n \sum_{n=1}^\infty \frac{1}{1+a_n} n=11+an1收敛.
    分析: 发散可知 a n a_n an收敛到a,a>0, a n > a a_n>a an>a, 可由此进行放缩证明收敛.
  17. ∑ n = 1 ∞ ( − 1 ) n − 1 1 n \sum_{n=1}^\infty (-1)^{n-1}\frac{1}{n} n=1(1)n1n1条件收敛.
  18. x n = 1 + 1 2 + 1 3 + . . . + 1 n − 2 n x_n=1+\frac{1}{\sqrt2}+\frac{1}{\sqrt3}+...+\frac{1}{\sqrt n}-2\sqrt n xn=1+2 1+3 1+...+n 12n , 证明 x n x_n xn收敛.
    分析: 构造级数 a n = x n − x x − 1 a_n=x_n-x_{x-1} an=xnxx1, 则有 a n a_n an的和 S = x n S=x_n S=xn, 只需证级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an收敛即可.
  19. 求证 lim ⁡ n → ∞ ( 2 n ) ! a n ! = 0 \lim_{n\to \infty}\frac{(2n)!}{a^{n!}}=0 limnan!(2n)!=0
    分析: 可以 a n a_n an为通项构造级数, 证明该级数收敛.

函数项级数

相关概念

  • { u n } \{u_n\} {un}是定义在同一个集合 A ⊆ R A\subseteq R AR上由无穷多项组成的一列函数(称为函数列), 将它的各项依次用加号联结起来所得到的表达式 u 1 + u 2 + . . . + u n + . . . 或 ∑ n = 1 ∞ u n u_1+u_2+...+u_n+...或\sum_{n=1}^\infty u_n u1+u2+...+un+...n=1un
    称为集合A上的函数项级数, u n u_n un称为他的通项, 前n项和 S n = ∑ k = 1 n u k S_n=\sum_{k=1}^n u_k Sn=k=1nuk称为它的部分和.
  • x 0 ∈ A x_0\in A x0A带入函数项级数, 得到了常数项级数
    ∑ n = 1 ∞ u n ( x 0 ) = u 1 ( x 0 ) + u 2 ( x 0 ) + . . . + u n ( x 0 ) + . . . \sum_{n=1}^\infty u_n(x_0)=u_1(x_0)+u_2(x_0)+...+u_n(x_0)+... n=1un(x0)=u1(x0)+u2(x0)+...+un(x0)+...
    若该级数收敛, 则称 x 0 x_0 x0是函数项级数的收敛点, 由所有收敛点构成的集合称为收敛域. 若 x 0 x_0 x0不是收敛点, 称它为该级数的发散点, 所有发散点构成的集合称为发散域.若 ∀ x ∈ D \forall x\in D xD级数都收敛, 则称该级数在D上处处收敛(逐点收敛), D为其收敛域, 此时, 称由 S ( x ) = ∑ n = 1 ∞ u n ( x ) , x ∈ D S(x)=\sum_{n=1}^\infty u_n(x), x\in D S(x)=n=1un(x),xD
    定义的函数 S : D → R S:D\to R S:DR为级数的和函数,简称为
  • 若函数项级数在D上处处收敛, 则 S ( x ) = lim ⁡ n → ∞ ∑ k = 1 n u k ( x ) = lim ⁡ n → ∞ S n ( x ) S(x)=\lim_{n\to \infty}\sum_{k=1}^n u_k(x)=\lim_{n\to \infty}S_n(x) S(x)=nlimk=1nuk(x)=nlimSn(x)
    也称 R n = S ( x ) − S n ( x ) = ∑ k = n + 1 ∞ u k ( x ) R_n=S(x)-S_n(x)=\sum_{k=n+1}^\infty u_k(x) Rn=S(x)Sn(x)=k=n+1uk(x)
    为级数的余项, 且 lim ⁡ n → ∞ R n = 0 ( x ∈ D ) \lim_{n\to \infty}R_n=0(x\in D) limnRn=0(xD)
  • 若存在函数 S : D → R S:D\to R S:DR, 满足 ∀ ε > 0 , ∃ N ( ε ) ∈ N + , 当 n > N ( ε ) 时 , ∀ x ∈ D , 恒 有 ∣ S ( x ) − S n ( x ) ∣ < ε \forall \varepsilon>0, \exist N(\varepsilon)\in {\bf N_+},当n>N(\varepsilon)时, \forall x\in D, 恒有|S(x)-S_n(x)|<\varepsilon ε>0,N(ε)N+,n>N(ε),xD,S(x)Sn(x)<ε,则称级数在D上一致收敛于S.

相关性质

  • 柯西一致收敛原理:函数项级数在D上一致收敛的充要条件是
    ∀ ε > 0 , ∃ N ( ε ) , 使 得 ∀ n , p ∈ N + , 当 n > N 时 , ∀ x ∈ D , 恒 有 ∣ S n + p ( x ) − S n ( x ) ∣ = ∑ k = n n + p u k ( x ) < ε \forall \varepsilon >0, \exist N(\varepsilon), 使得\forall n,p\in {\bf N_+}, 当n>N时, \forall x\in D, \\恒有|S_{n+p}(x)-S_n(x)|=\sum_{k=n}^{n+p}u_k(x)<\varepsilon ε>0,N(ε),使n,pN+,n>N,xD,Sn+p(x)Sn(x)=k=nn+puk(x)<ε
  • M判别准则:如果存在一个收敛的正项级数 ∑ n = 1 ∞ M n , ∀ n ∈ N , x ∈ D , 恒 有 ∣ u n ( x ) ∣ < = M n \sum_{n=1}^\infty M_n, \forall n\in {\bf N},x\in D,恒有|u_n(x)|<=M_n n=1Mn,nN,xD,un(x)<=Mn,那么该函数项级数一定一致收敛. ∑ n = 1 ∞ M n \sum_{n=1}^\infty M_n n=1Mn称为优级数,或控制级数.
  • 和函数连续性: 设 u n ∈ C ( I ) ( n ∈ N + ) , u_n\in C(I)(n\in N_+), unC(I)(nN+),若函数项级数 ∑ n = 1 ∞ u n \sum_{n=1}^\infty u_n n=1un在区间I上一致收敛于 S : I → R S:I\to R S:IR,则和函数 S ∈ C ( I ) S\in C(I) SC(I)
  • 和函数可积性
  • 和函数可导性

相关例题

  1. 求证 ∑ n = 1 ∞ x n ( 1 − x ) 2 \sum_{n=1}^\infty x^n(1-x)^2 n=1xn(1x)2 [ 0 , 1 ] [0,1] [0,1]上一致收敛.
    分析: 利用M判别准则证明, 需找到函数项级数的最大值, 故对级数求导, 求得最大值, 再将含n的最大值带入级数中, 证明其收敛即可.
  2. 求证 ∑ n = 1 ∞ a r c t a n 2 x x 2 + n 2 在 ( − ∞ , + ∞ ) \sum_{n=1}^\infty arctan\frac{2x}{x^2+n^2}在(-\infty,+\infty) n=1arctanx2+n22x(,+)上一致收敛.
    分析:利用 x > a r c t a n x x>arctanx x>arctanx放缩级数, 得到优级数 2 ∣ x ∣ x 2 + n 2 \frac{2|x|}{x^2+n^2} x2+n22x,判断优级数敛散性即可.
  3. 求证 ∑ n = 1 ∞ x 2 e − n x 在 ( 0 , + ∞ ) \sum_{n=1}^\infty x^2e^{-nx}在(0,+\infty) n=1x2enx(0,+)一致收敛.
    分析: 利用泰勒公式进行放缩, 将分母缩小至 1 2 n 2 x 2 \frac{1}{2}n^2x^2 21n2x2,约掉x,判断敛散性.
  4. ∑ n = 1 ∞ n x n \sum_{n=1}^\infty nx^n n=1nxn的和函数
    分析: 考虑 x n + 1 x^{n+1} xn+1的导数为 ( n + 1 ) x n (n+1)x^n (n+1)xn,因此可将原级数配成含 x n + 1 x^{n+1} xn+1的导数的形式.
  5. 求幂级数 ∑ n = 1 ∞ x n − 1 n 2 n \sum_{n=1}^\infty \frac{x^{n-1}}{n2^n} n=1n2nxn1的和函数
    分析: 级数形式类似对数函数的级数展开式.
  6. 求幂级数 ∑ n = 1 ∞ 2 n − 1 2 n x 2 n − 2 \sum_{n=1}^\infty \frac{2n-1}{2^n}x^{2n-2} n=12n2n1x2n2的和函数
    分析: 先积分, 在求和, 在求导
  7. 求幂级数 ∑ n = 1 ∞ ( − 1 ) n ( n + 1 ) ( 2 n + 1 ) ! x 2 n + 1 \sum_{n=1}^\infty \frac{(-1)^n(n+1)}{(2n+1)!}x^{2n+1} n=1(2n+1)!(1)n(n+1)x2n+1的和函数.
  8. 求常数项级数 ∑ n = 1 ∞ ( − 1 ) n n 2 + n 2 n \sum_{n=1}^\infty (-1)^n\frac{n^2+n}{2^n} n=1(1)n2nn2+n的和函数.
    分析: 可转换成幂级数 ∑ n = 1 ∞ ( − 1 ) n n ( n + 1 ) x n \sum_{n=1}^\infty (-1)^nn(n+1)x^n n=1(1)nn(n+1)xn,最后将x=2代入.
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值