2021 数学一真题讲解笔记

2021 数学一真题讲解笔记

选填 1h20m - 1h30m 左右

大题 1h30m 左右 即 15min/题

一个题做完了就过,不会就圈起来就过,不要老徘徊

一眼扫上去没思路,想个1-2min再考虑要不要跳过,不用太急

试卷分析

  1. 没有偏题、怪题;没有超纲问题和科学性问题

  2. 选择题主要考察 基本概念、基本性质和主要结论;填空题主要考察简单运算

  3. 解答题考察常见问题的一般解决方法,重点考察运算能力、逻辑推理能力、文字表达能力,以及综合运用概念、性质和基本方法分析问题、处理问题的能力

草稿纸要写的整洁一些,可以有效避免计算出错

有些考的知识点就是用来简化计算的,直接运算就是很慢,很容易出错

多总结知识点,构建知识体系

练考试时间分配

答题不规范

试卷题目

【1】
  1. e x − x − 1 ∼ 1 2 x 2   ( x → 0 ) e^x-x-1\sim\frac12x^2\ (x\to 0) exx121x2 (x0)

  2. 只有两种情况考虑极值

    1 - f ′ ( x ) = 0 f^\prime(x)=0 f(x)=0

    2 - f ′ ( x ) 不存在 f^\prime(x) 不存在 f(x)不存在

【2】

方法一:正常求全微分( f ( u , v ) f(u,v) f(u,v) 对 u、v 分别求偏导,期间可能设涉及求导的链式法则)

细节:式子 1 令 x=0 ;式子 2 令 x=1

方法二:眼瞅法(变量代换)
f ( x + 1 , e x ) = x ( x + 1 ) 2 ⇒ ln ⁡ e x ( x + 1 ) 2 ⇒ ln ⁡ ( y ) ⋅ x 2 f(x+1,e^x)=x(x+1)^2 \Rightarrow \ln e^x(x+1)^2 \Rightarrow \ln (y) \cdot x^2 f(x+1,ex)=x(x+1)2lnex(x+1)2ln(y)x2
蒙的第一个式子并不唯一,用第二个式子检验,向第二个式子代入 x = x + 1 , y = e x x = x+1,y=e^x x=x+1,y=ex
f ( x , y ) = x 2 ln ⁡ y ⇒ f ( x , x 2 ) = 2 x 2 ln ⁡ x 2 f(x,y)=x^2\ln y\Rightarrow f(x,x^2) =2x^2\ln x^2 \\ f(x,y)=x2lnyf(x,x2)=2x2lnx2
与题干给的一样,所以正确

【3】

方法一:硬求导套泰勒公式

不过求完导整个人都不好了

方法二:
f ( x ) = s i n x 1 + x 2 = s i n x ⋅ 1 1 + x 2 f(x)=\frac {sinx}{1+x^2}=sinx \cdot \frac{1}{1+x^2} f(x)=1+x2sinx=sinx1+x21
对前后两项分别做泰勒展开,即
f ( x ) = [ x − 1 6 x 3 + ⋯   ] ⋅ [ 1 − x 2 + ⋯   ] = x + ( − 1 − 1 6 ) x 3 + ⋯ f(x)=[x-\frac16x^3+\cdots]\cdot[1-x^2+\cdots]=x+(-1-\frac16)x^3+\cdots f(x)=[x61x3+][1x2+]=x+(161)x3+
方法三:与 方法二 类似
s i n x 1 + x 2 = a x + b x 2 + c x 3 s i n x = ( a x + b x 2 + c x 3 ) ( 1 + x 2 ) x − 1 6 x 3 = a x + b x 2 + ( a + c ) x 3 + ⋯ \begin{aligned} \frac {sinx}{1+x^2}&=ax+bx^2+cx^3 \\ sinx&=(ax+bx^2+cx^3)(1+x^2) \\ x-\frac16x^3&=ax+bx^2+(a+c)x^3+\cdots \end{aligned} 1+x2sinxsinxx61x3=ax+bx2+cx3=(ax+bx2+cx3)(1+x2)=ax+bx2+(a+c)x3+

【4】

定积分的精确定义

取左右端点区分 k n \frac kn nk k − 1 n \frac {k-1}n nk1 ,是否 -1 对结果无影响

也可以举特例,令 f ( x ) = 1 f(x)=1 f(x)=1

【5】

等价、相似、合同,都要求 可逆线性变换(都是可逆矩阵 P)

方法一:配方化成标准型

方法二:求特征值

【6】

方法一:三向量做 施密特正交化
β 1 = α 1 β 2 = α 2 − k β 1 β 3 = α 3 − l 1 β 1 − l 2 β 2 \begin{aligned} \beta_1&=\alpha_1 \\ \beta_2&=\alpha_2-k\beta_1 \\ \beta_3&=\alpha_3-l_1\beta_1-l_2\beta_2 \end{aligned} β1β2β3=α1=α2kβ1=α3l1β1l2β2

k = ( α 2 , β 1 ) ( β 1 , β 1 ) = 1 l 1 = ( α 3 , β 1 ) ( β 1 , β 1 ) = 5 2 l 2 = ( α 3 , β 2 ) ( β 2 , β 2 ) = 1 2 k=\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}=1 \\ l_1=\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}=\frac52 \\ l_2=\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}=\frac12 \\ k=(β1,β1)(α2,β1)=1l1=(β1,β1)(α3,β1)=25l2=(β2,β2)(α3,β2)=21

方法二: β 1 、 β 2 、 β 3 \beta_1、\beta_2、\beta_3 β1β2β3 两两点乘为 0

【7】

初等变换不变 rank

AB问题

  1. AB 的列可由 A 的列 线性表出,即看作 A 做初等列变换(B)
  2. AB 的行可由 B 的行 线性表出,即看作 B 做初等列变换(A)

分块矩阵的公式

r ( A A T ) = r ( A T A ) = r ( A ) r(AA^T)=r(A^TA)=r(A) r(AAT)=r(ATA)=r(A)
r [ A O O B ] = r ( A ) + r ( B ) r\begin{bmatrix} A & O \\ O & B \\ \end{bmatrix} = r(A)+r(B) r[AOOB]=r(A)+r(B)

r ( A ) + r ( B ) ≤ r [ A O C B ] ≤ r ( A ) + r ( B ) + r ( C ) r(A)+r(B)\leq r\begin{bmatrix} A & O \\ C & B \\ \end{bmatrix} \leq r(A)+r(B)+r(C) r(A)+r(B)r[ACOB]r(A)+r(B)+r(C)

当 A 可逆时:
r [ A O C B ] = r ( A ) + r ( B ) r\begin{bmatrix} A & O \\ C & B \\ \end{bmatrix} = r(A)+r(B) r[ACOB]=r(A)+r(B)

【8】

0 < P ( B ) < 1 0<P(B)<1 0<P(B)<1

A. 若 P ( A ∣ B ) = P ( A ) ⇒ P ( A B ) = P ( A ) P ( B ) P(A|B)=P(A)\Rightarrow P(AB)=P(A)P(B) P(AB)=P(A)P(AB)=P(A)P(B)

P ( A ∣ B ‾ ) = P ( A ) P(A|\overline{B})=P(A) P(AB)=P(A)
P ( A B ‾ ) P ( B ‾ ) = P ( A ) − P ( A B ) 1 − P ( B ) = P ( A ) − P ( A ) P ( B ) 1 − P ( B ) = P ( A ) ( 1 − P ( B ) ) 1 − P ( B ) = P ( A ) \begin{aligned} \frac{P(A\overline{B})}{P(\overline{B})}&=\frac{P(A)-P(AB)}{1-P(B)}\\ &=\frac{P(A)-P(A)P(B)}{1-P(B)} \\ &=\frac{P(A)(1-P(B))}{1-P(B)} \\ &=P(A) \end{aligned} P(B)P(AB)=1P(B)P(A)P(AB)=1P(B)P(A)P(A)P(B)=1P(B)P(A)(1P(B))=P(A)

其它选项类似,均通过基本的集合运算推导

【15】

行元素之和为 2 的含义:
A [ 1 1 1 ] = 2 [ 1 1 1 ] (1) A \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix}= 2 \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} \tag{1} A 111 =2 111 (1)
证明:

[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ 1 1 1 ] = [ a 11 + a 12 + a 13 a 21 + a 22 + a 23 a 31 + a 32 + a 33 ] \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix}= \begin{bmatrix} a_{11}+a_{12}+a_{13} \\ a_{21}+a_{22}+a_{23} \\ a_{31}+a_{32}+a_{33} \\ \end{bmatrix} a11a21a31a12a22a32a13a23a33 111 = a11+a12+a13a21+a22+a23a31+a32+a33

恰好每行元素之和都为 2 ,所以得证

A ∗ = [ A 11 A 21 A 31 ⋯ ⋯ ] A^*= \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ \cdots \\ \cdots \\ \end{bmatrix} A= A11A21A31

所以
A ∗ [ 1 1 1 ] A^* \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} A 111
的第一行即为所求

于是从等式 ( 1 ) (1) (1) 构建出答案( 注:此题 |A|=3 )
A ∗ A [ 1 1 1 ] = 2 A ∗ [ 1 1 1 ] A ∗ [ 1 1 1 ] = 3 2 [ 1 1 1 ] \begin{aligned} A^*A \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix}&= 2A^* \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} \\ A^* \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} &=\frac32 \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} \end{aligned} AA 111 A 111 =2A 111 =23 111
所以
A 11 + A 21 + A 31 = 3 2 A_{11}+A_{21}+A_{31}=\frac32 A11+A21+A31=23

【17】

求极限的时候先定型!

此题为 ∞ − ∞ \infty-\infty ,所以不能各自求极限,如果是 常数 ± \pm ± 常数 则可以各自求极限

方法一:通分,补项
lim ⁡ x → 0 ( s i n x + s i n x ∫ 0 x e t 2 d t − e x + 1 x 2 ) = lim ⁡ x → 0 ( ( s i n x − x ) + s i n x ∫ 0 x e t 2 d t − ( e x − 1 − x ) x 2 ) = lim ⁡ x → 0 s i x − x x 2 + lim ⁡ x → 0 s i n x ∫ 0 x e t 2 d t x 2 − lim ⁡ x → 0 e x − 1 − x x 2 = ⋯ ⋯ \begin{aligned} &\lim_{x\to0}\left( \frac{sinx+sinx\int_0^x e^{t^2}dt-e^x+1}{x^2}\right) \\ =&\lim_{x\to0}\left( \frac{(sinx-x)+sinx\int_0^x e^{t^2}dt-(e^x-1-x)}{x^2}\right) \\ =&\lim_{x\to0}\frac{six-x}{x^2}+\lim_{x\to0}\frac{sinx\int_0^x e^{t^2}dt}{x^2}-\lim_{x\to0}\frac{e^x-1-x}{x^2} \\ =&\quad\cdots\cdots \end{aligned} ===x0lim(x2sinx+sinx0xet2dtex+1)x0lim(x2(sinxx)+sinx0xet2dt(ex1x))x0limx2sixx+x0limx2sinx0xet2dtx0limx2ex1x⋯⋯
方法二:
lim ⁡ x → 0 1 + ∫ 0 x e t 2 d t e x − 1 = lim ⁡ x → 0 ∫ 0 x e t 2 d t e x − 1 + lim ⁡ x → 0 ( 1 e x − 1 − 1 s i n x ) \begin{aligned} &\lim_{x\to0}\frac{1+\int_0^x e^{t^2}dt}{e^x-1} \\ =&\lim_{x\to0}\frac{\int_0^x e^{t^2}dt}{e^x-1}+\lim_{x\to0}\left(\frac{1}{e^x-1} -\frac1{sinx}\right) \end{aligned} =x0limex11+0xet2dtx0limex10xet2dt+x0lim(ex11sinx1)
后面是 C + ( ∞ − ∞ ) C+(\infty-\infty) C+() 所以前面的式子可以先求极限,后面的式子正常通分然后求解

此处核心是要能看出来 ∫ 0 x e t 2 d t \int_0^x e^{t^2}dt 0xet2dt 跟分母一样,都是一阶,所以可以 “扔出来”

【19】

求曲线上一点到 XOY 面距离的最大值,距离 d = ∣ z ∣ d=|z| d=z ,建议设 z 2 z^2 z2

求条件极值 → \to 拉格朗日乘数法,此题的方程组不太好解
F ( x , y , z , λ , μ ) = z 2 + λ ( x 2 + 2 y 2 − z − 6 ) + μ ( 4 x + 2 y + z − 30 ) F(x,y,z,\lambda,\mu)=z^2+\lambda(x^2+2y^2-z-6)+\mu(4x+2y+z-30) F(x,y,z,λ,μ)=z2+λ(x2+2y2z6)+μ(4x+2y+z30)

{ F x ′ = 2 λ x + 4 μ = 0 F y ′ = 4 λ y + 2 μ = 0 F z ′ = 2 z − λ + μ = 0 F λ ′ = x 2 + 2 y 2 − z − 6 = 0 F μ ′ = 4 x + 2 y + z − 30 = 0 \begin{cases} F^\prime_x=2\lambda x+4\mu=0 \\ F^\prime_y=4\lambda y+2\mu=0 \\ F^\prime_z=2z-\lambda+\mu=0 \\ F^\prime_\lambda=x^2+2y^2-z-6=0 \\ F^\prime_\mu=4x+2y+z-30=0 \\ \end{cases} Fx=2λx+4μ=0Fy=4λy+2μ=0Fz=2zλ+μ=0Fλ=x2+2y2z6=0Fμ=4x+2y+z30=0

解此方程组的基本思路:从前三个方程里找关系(找到一个关系式就够),往方程 4、5 里面代入

① - 2②: 2 λ x = 8 λ y ⇒ λ ( x − 4 y ) = 0 2\lambda x=8\lambda y\Rightarrow \lambda(x-4y)=0 2λx=8λyλ(x4y)=0

于是分为两种情况:

  1. x = 4 y x=4y x=4y

往④、⑤代入 x = 4 y x=4y x=4y
{ 16 y 2 + 2 y 2 − z = 6 16 y + 2 y + z = 30 \begin{cases} 16y^2+2y^2-z=6 \\ 16y+2y+z=30 \\ \end{cases} {16y2+2y2z=616y+2y+z=30
于是有 y 2 + y − 2 = 0 y^2+y-2=0 y2+y2=0

y = 1 y=1 y=1 时解得
{ x = 4 y = 1 z = 12 \begin{cases} x=4 \\ y=1 \\ z=12\\ \end{cases} x=4y=1z=12
y = − 2 y=-2 y=2 时解得
{ x = − 8 y = − 2 z = 66 \begin{cases} x=-8 \\ y=-2 \\ z=66 \\ \end{cases} x=8y=2z=66

  1. λ = 0 \lambda=0 λ=0

方程组中代入 λ = 0 \lambda=0 λ=0

容易推出 μ = 0 \mu=0 μ=0 z = 0 z=0 z=0

于是有
{ x 2 + 2 y 2 = 6 4 x + 2 y = 30 \begin{cases} x^2+2y^2=6 \\ 4x+2y=30 \\ \end{cases} {x2+2y2=64x+2y=30

x 2 + 2 ( 15 − 2 x ) 2 = 6 x^2+2(15-2x)^2=6 x2+2(152x)2=6 无解

λ = 0 \lambda=0 λ=0 μ = 0 \mu=0 μ=0 时一般都不是解

综上,此题 z 的最大值为 66

此题的给分点:

设出 z 2 z^2 z2 1分

设出 F ( x , y , z , λ , μ ) F(x,y,z,\lambda,\mu) F(x,y,z,λ,μ) 2分

求出偏导数方程组 2分

解出方程组的结果(不需要解方程的步骤) 6分

答:z 的最大值为 66 1分

【21】

A = ( a 1 − 1 1 a − 1 − 1 − 1 a ) A= \begin{pmatrix} a & 1 & -1 \\ 1 & a & -1 \\ -1 & -1 & a \\ \end{pmatrix} A= a111a111a

先求特征值 λ \lambda λ 硬求,但并不难

然后求特征向量

因为要求正交矩阵P ,而同一个特征值对应的特征向量不一定正交,所以需要注意(1:19:00是他求特征向量的过程,很快)

还需要进行单位化

最后将 P 拼出来

注意对角线要一一对应

核心 P T A P = P − 1 A P = Λ P^TAP=P^{-1}AP=\Lambda PTAP=P1AP=Λ

第一问 7分 、第二问 5分

C 2 = ( a + 3 ) E − A C^2=(a+3)E-A C2=(a+3)EA
A = P [ a − 1 a − 1 a − 1 ] P − 1 A=P \begin{bmatrix} a-1&& \\ & a-1 & \\ && a-1 \\ \end{bmatrix}P^{-1} A=P a1a1a1 P1

C 2 = ( a + 3 ) E − P [ a − 1 a − 1 a − 1 ] P − 1 C^2=(a+3)E-P \begin{bmatrix} a-1&& \\ & a-1 & \\ && a-1 \\ \end{bmatrix}P^{-1} C2=(a+3)EP a1a1a1 P1

核心变换 P E P − 1 = P P − 1 = E PEP^{-1}=PP^{-1}=E PEP1=PP1=E

C 2 = P ( a + 3 ) E P − 1 − P [ a − 1 a − 1 a − 1 ] P − 1 = P [ a + 3 a + 3 a + 3 ] P − 1 − P [ a − 1 a − 1 a − 1 ] P − 1 = P [ 4 4 1 ] P − 1 \begin{aligned} C^2&=P(a+3)EP^{-1}-P \begin{bmatrix} a-1&& \\ & a-1 & \\ && a-1 \\ \end{bmatrix}P^{-1} \\ &=P \begin{bmatrix} a+3&& \\ & a+3 & \\ && a+3 \\ \end{bmatrix}P^{-1}-P \begin{bmatrix} a-1&& \\ & a-1 & \\ && a-1 \\ \end{bmatrix}P^{-1} \\ &=P \begin{bmatrix} 4&& \\ & 4 & \\ && 1 \\ \end{bmatrix}P^{-1} \end{aligned} C2=P(a+3)EP1P a1a1a1 P1=P a+3a+3a+3 P1P a1a1a1 P1=P 441 P1

另一个核心变换: P A n P − 1 = Λ n PA^nP^{-1}=\Lambda^n PAnP1=Λn

于是
C 2 = P [ 4 4 1 ] P − 1 = [ 2 2 1 ] 2 P − 1 C^2=P \begin{bmatrix} 4&& \\ & 4 & \\ && 1 \\ \end{bmatrix}P^{-1}= \begin{bmatrix} 2 && \\ & 2 & \\ && 1 \\ \end{bmatrix}^2P^{-1} C2=P 441 P1= 221 2P1
所以
C = P [ 2 2 1 ] P − 1 = P [ 2 2 1 ] P T C = P \begin{bmatrix} 2 && \\ & 2 & \\ && 1 \\ \end{bmatrix}P^{-1}= P \begin{bmatrix} 2 && \\ & 2 & \\ && 1 \\ \end{bmatrix}P^T C=P 221 P1=P 221 PT

选择20 填空20 简答 计算 四个题型

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值