Description
小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!
Input
每次输入一个数n(1<=n<=35),当n等于-1时结束输入。
Output
对于每个输入数据输出路径数,具体格式看Sample。
Sample Input
1
3
12
-1
Sample Output
1 1 2
2 3 10
3 12 416024
一开始用的深搜,超时。。后来百度发现是个叫什么卡特兰数的东西。。
超时代码:
#include <stdio.h>
#include <stdlib.h>
int n,direction[2][2]={{1,0},{0,1}},board[36][36];
long long int steps;
void findpath(int x1,int y1,int x2,int y2){
int i,x,y;
if(x1==x2&&y1==y2){
++steps;
return;
}
for(i=0;i<2;i++){
x=x1+direction[i][0];
y=y1+direction[i][1];
if(x>=0&&y>=0&&x<=n&&y<=n&&y<=x){
findpath(x,y,n,n);
}
}
}
int main()
{
int CASE=0;
while(scanf("%d",&n)&&n!=-1){
steps=0;
findpath(0,0,n,n);
printf("%d %d %ld\n",++CASE,n,2*steps);
}
return 0;
}
正确代码:
#include <stdio.h>
#include <memory.h>
int n;
long long int a[36][36];
void findpath(n){
int i,j;
for(i=0;i<=n;i++)
a[i][0]=a[0][i]=1;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++){
if(i>=j-1) //对角线的情况
a[i][j]+=a[i][j-1];
if(i>=j+1) //对角线之上的情况
a[i][j]+=a[i-1][j];
}
}
int main()
{
int CASE=0;
memset(a,0,sizeof(a));
findpath(36);
while(scanf("%d",&n)&&n!=-1){
printf("%d %d %I64d\n",++CASE,n,2*a[n][n]);
}
return 0;
}
a[x][y]表示从0,0到x,y的路径数.
对于对角线上的点,只需要到达这点的上面一点就可以.对于不在对角线上的点,需要到达它上面和左边.
一开始用的是double,输出是%0.f,WA,后来改成 long long int和%I64d,就过了,不知道为什么.