dp动态规划

1##


本质:递归)

O(1)dp算法

经典例题1
维护最大 区间和

思路:考虑两种情况
1.极端情况:所有数都为负数 输出ans=0
2.不断递归 取最大值
优化递归:dp[i]维护的是前i个数中的最大和
随着数值的不断输入 不断更新 所以其时间复杂度 为 O(1)

#include"bits/stdc++.h"
using namespace std;
int N,a,dp,ans=0;
int main()
{
	cin>>N;
	for(int i=0;i<n;i++){
	dp=max(a,a+dp);//遇到a 只有加入背包或者从a开始舍弃之前的背包 两种情况
	ans=max(ans,dp);
}
cout<<ans;
return 0;
}

01背包问题

在这里插入图片描述

先考虑最暴力的枚举
f[i][j]表示只看前i个物品 体积为j的情况的总价值
则需要枚举j属于【0~v】
状态转移公式:
f[i][j]=max(f[i-1][j]+f[i-1][j-v[i]])
初始化 f[0][0]

dp二维数组
#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int main()
{
	int v[N],w[N];
	int f[N][N];
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		cin>>v[i]>>w[i];
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=0;j<=m;j++){
			f[i][j]=f[i-1][j];
			if(v[i]<=j)//特判一下不能选的物品
			{
				f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
			}
		} 
	}
	int res=0;
	for(int i=0;i<=m;i++)res=max(res,f[n][i]);
	
	cout<<res<<endl;
	return 0;
}
一维数组 在二维条件上优化:
#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int main()
{
	int v[N],w[N];
	int f[N];
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		cin>>v[i]>>w[i];
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=m;j>=v[i];j--hyyhhhhht)//
		{
			//if(v[i]<=j)//特判一下不能选的物品
			f[j]=max(f[j],f[j-v[i]]+w[i]);//要使此层为i-1,需要从后往前遍历
				
			
		} 
	}
	cout<<f[m]<<endl;
	return 0;
}

总结:
优化成一维数组需要考虑极限条件
!!PS:为了确保最后的输出最大值是从f【0】状态转移来的,需要令
memset(f,0x3f,sizeof f)
f[0]=0;

堆硬币

int dp[N][N];//最简单的01背包问题 
int h[N];
int main()
{
	int n,k;
	cin>>n>>k;
	memset(dp,0x3f,sizeof dp);
	dp[0][0]=0;
	for(int i=1;i<=n;i++){
		cin>>h[i];
		dp[i][0]=0;
		// dp[i][j]表示的是从前i个里面选高度为j的堆数量
		}
	sort(h+1,h+1+n);
	for(int i=1;i<=n;i++){
		for(int j=1;j<=3000;j++)//测试点的最大高为3000 
		dp[i][j] = dp[i-1][j];
		if(j>=h[i]){
			dp[i][j]=min(dp[i-1][j],dp[i-1][j-h[i]]+1);
		}
	}
	//计算过程结束
	//接下来判断结果 特例 
	if(dp[n][k]==0x3f3f3f3f){
		cout<<"-1";
		return 0;
	}
	cout<<dp[n][k]<<endl;
	
	vector<int>res;
	for(int i=n;i>=1;i--)//h已经按照升序排序  则需要从n到1遍历
	//此过程为 倒着找硬币堆 并拉入stl 
	{
		if(k>=h[i]&&dp[i-1][k-h[i]]+1==dp[n][k]){
			res.push_back(h[i]);
			k-=h[i];//已知到答案 一步步倒推每个元素 
		}
	}
	sort(res.begin(),res.end());//多解则按字典序排列 
	for(int i=0;i<res.size();i++)//遍历每个答案 
	{
		cout<<res[i]<<" ";
	} 
	 
}

典型例题

在这里插入图片描述

思路:先将每个雕塑数字记录下来并去重
再将特殊条件下的dp赋初值 再进行递归

#include<bits/stdc++.h>
using namespace std;
const int N= 1e6+10;
const int M=5e3+10;
const int mod = 1e9+7;
typedef long long ll;
set<ll> m;
ll a[N],b[N];
bool st[N];
ll dp[M][M];//本质是前i个里面选j个加入
int main()
{
    int n,k;
    cin>>n>>k;
    ll res=0;
    
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        if(!st[a[i]])b[++res]=a[i];//去重
        st[a[i]]=true;
   
    }
    dp[0][0]=1;//从前0个中选0个只有一种方法
    for(int i=1;i<=res;i++)
    {    
        dp[i][0]=1;//从前i个中选0个只有一种方法
        for(int j=1;j<=k;j++){
        dp[i][j]=(dp[i-1][j]+dp[i-1][j-1]*b [i])%mod;
        }
    }
    ll ans=0;
    for(int i=0;i<=k&&i<=res;i++){
        ans=(ans+dp[res][i])%mod;
    }
    cout<<ans<<endl;
    return 0;
       
   
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值