1##
本质:递归)
O(1)dp算法
经典例题1
维护最大 区间和
思路:考虑两种情况
1.极端情况:所有数都为负数 输出ans=0
2.不断递归 取最大值
优化递归:dp[i]维护的是前i个数中的最大和
随着数值的不断输入 不断更新 所以其时间复杂度 为 O(1)
#include"bits/stdc++.h"
using namespace std;
int N,a,dp,ans=0;
int main()
{
cin>>N;
for(int i=0;i<n;i++){
dp=max(a,a+dp);//遇到a 只有加入背包或者从a开始舍弃之前的背包 两种情况
ans=max(ans,dp);
}
cout<<ans;
return 0;
}
01背包问题
先考虑最暴力的枚举
f[i][j]表示只看前i个物品 体积为j的情况的总价值
则需要枚举j属于【0~v】
状态转移公式:
f[i][j]=max(f[i-1][j]+f[i-1][j-v[i]])
初始化 f[0][0]
dp二维数组
#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int main()
{
int v[N],w[N];
int f[N][N];
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++){
f[i][j]=f[i-1][j];
if(v[i]<=j)//特判一下不能选的物品
{
f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
}
}
int res=0;
for(int i=0;i<=m;i++)res=max(res,f[n][i]);
cout<<res<<endl;
return 0;
}
一维数组 在二维条件上优化:
#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int main()
{
int v[N],w[N];
int f[N];
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
{
for(int j=m;j>=v[i];j--hyyhhhhht)//
{
//if(v[i]<=j)//特判一下不能选的物品
f[j]=max(f[j],f[j-v[i]]+w[i]);//要使此层为i-1,需要从后往前遍历
}
}
cout<<f[m]<<endl;
return 0;
}
总结:
优化成一维数组需要考虑极限条件
!!PS:为了确保最后的输出最大值是从f【0】状态转移来的,需要令
memset(f,0x3f,sizeof f)
f[0]=0;
堆硬币
int dp[N][N];//最简单的01背包问题
int h[N];
int main()
{
int n,k;
cin>>n>>k;
memset(dp,0x3f,sizeof dp);
dp[0][0]=0;
for(int i=1;i<=n;i++){
cin>>h[i];
dp[i][0]=0;
// dp[i][j]表示的是从前i个里面选高度为j的堆数量
}
sort(h+1,h+1+n);
for(int i=1;i<=n;i++){
for(int j=1;j<=3000;j++)//测试点的最大高为3000
dp[i][j] = dp[i-1][j];
if(j>=h[i]){
dp[i][j]=min(dp[i-1][j],dp[i-1][j-h[i]]+1);
}
}
//计算过程结束
//接下来判断结果 特例
if(dp[n][k]==0x3f3f3f3f){
cout<<"-1";
return 0;
}
cout<<dp[n][k]<<endl;
vector<int>res;
for(int i=n;i>=1;i--)//h已经按照升序排序 则需要从n到1遍历
//此过程为 倒着找硬币堆 并拉入stl
{
if(k>=h[i]&&dp[i-1][k-h[i]]+1==dp[n][k]){
res.push_back(h[i]);
k-=h[i];//已知到答案 一步步倒推每个元素
}
}
sort(res.begin(),res.end());//多解则按字典序排列
for(int i=0;i<res.size();i++)//遍历每个答案
{
cout<<res[i]<<" ";
}
}
典型例题
思路:先将每个雕塑数字记录下来并去重
再将特殊条件下的dp赋初值 再进行递归
#include<bits/stdc++.h>
using namespace std;
const int N= 1e6+10;
const int M=5e3+10;
const int mod = 1e9+7;
typedef long long ll;
set<ll> m;
ll a[N],b[N];
bool st[N];
ll dp[M][M];//本质是前i个里面选j个加入
int main()
{
int n,k;
cin>>n>>k;
ll res=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
if(!st[a[i]])b[++res]=a[i];//去重
st[a[i]]=true;
}
dp[0][0]=1;//从前0个中选0个只有一种方法
for(int i=1;i<=res;i++)
{
dp[i][0]=1;//从前i个中选0个只有一种方法
for(int j=1;j<=k;j++){
dp[i][j]=(dp[i-1][j]+dp[i-1][j-1]*b [i])%mod;
}
}
ll ans=0;
for(int i=0;i<=k&&i<=res;i++){
ans=(ans+dp[res][i])%mod;
}
cout<<ans<<endl;
return 0;
}