假设A为开集,则一定存在一个开区间IPI_PIP满足,IPI_PIP ⊂\subset⊂ A.
这是因为开集A里面的每一点P ∈\in∈ A 都是内点,即P为内点。而根据内点的定义,一定存在一个以点P为圆心,δ\deltaδ为半径的开邻域U(P,δ)U(P,\delta)U(P,δ)包含于A。这里开邻域为开区间,故可取IP=U(P,δ)I_P=U(P,\delta)IP=U(P,δ)。
假设A为开集,则一定存在一个开区间IPI_PIP满足,IPI_PIP ⊂\subset⊂ A.
这是因为开集A里面的每一点P ∈\in∈ A 都是内点,即P为内点。而根据内点的定义,一定存在一个以点P为圆心,δ\deltaδ为半径的开邻域U(P,δ)U(P,\delta)U(P,δ)包含于A。这里开邻域为开区间,故可取IP=U(P,δ)I_P=U(P,\delta)IP=U(P,δ)。