【BZOJ】1003 物流运输

【分析】

N 天最小,考虑递推。

f[i]表示前 i 天的最小成本,则:
边界为:f[0]=0
动态转移方程为 f[i]=min(f[j]+MinPath(j,i))+k
其中 MinPath 直接用最短路求。

时间复杂度: O(n2k)
空间复杂度: O(m2)

【代码】

#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;

const int N=101;
const int M=21;
const int MAX=100000;

int n,m,k,e;
struct G
{
    int v,d,nxt;
}map[M*M<<1];
int tot,hd[M],cant[M][N];
int d[M],q[M],h,t,used[M];
int f[N],can[M];

inline void ins(int u,int v,int d)
{
    map[++tot].v=v;
    map[tot].d=d;
    map[tot].nxt=hd[u];
    hd[u]=tot;
}

void init(void)
{
    int x,y,z;
    scanf("%d%d%d%d",&n,&m,&k,&e);
    for (int i=1;i<=e;i++)
    {
        scanf("%d%d%d",&x,&y,&z);
        ins(x,y,z),ins(y,x,z);
    }

    scanf("%d",&e);
    for (int i=1;i<=e;i++)
    {
        scanf("%d%d%d",&x,&y,&z);
        for (int j=y;j<=z;j++) cant[x][j]=1;
    }
    for (int i=1;i<=m;i++)
        for (int j=1;j<=n;j++)
            cant[i][j]+=cant[i][j-1];
}

inline int min(int i,int j)
{
    return i<j?i:j;
}

int SPFA(void)
{
    memset(used,0,sizeof used);
    for (int i=1;i<=m;i++) d[i]=MAX;
    h=0,t=1,d[1]=0,q[t]=1,used[1]=1;

    int k;
    for (;h^t;)
    {
        k=q[h=h%m+1];
        for (int kk=hd[k];kk;kk=map[kk].nxt)
            if (can[map[kk].v]&&d[k]+map[kk].d<d[map[kk].v])
            {
                d[map[kk].v]=d[k]+map[kk].d;
                if (!used[map[kk].v]) used[q[t=t%m+1]=map[kk].v]=1;
            }
        used[k]=0;
    }
    return d[m];
}

void work(void)
{
    f[0]=-k;
    for (int i=1;i<=n;i++) f[i]=MAX;

    for (int i=1;i<=n;i++)
        for (int j=0;j<i;j++)
        {
            for (int kk=1;kk<=m;kk++)
                can[kk]=!(cant[kk][i]-cant[kk][j]);
            f[i]=min(f[i],f[j]+SPFA()*(i-j)+k);
        }
    printf("%d\n",f[n]);
}

int main(void)
{   
    init();
    work();
    return 0;
}

【小结】求 N <script type="math/tex" id="MathJax-Element-423">N</script>天最小的,可以通过递推或者直接求的方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值