基于MNIST的手写数字识别

本文详细介绍了如何在Python中使用PyTorch库基于MNIST数据集训练一个卷积神经网络进行手写数字识别,包括数据预处理、网络结构定义、损失函数选择、训练和测试过程,同时对比了在GPU和CPU上的训练效率。
摘要由CSDN通过智能技术生成

上次我们基于CIFAR-10训练一个图像分类器,梳理了一下训练模型的全过程,并且对卷积神经网络有了一定的理解,我们再在GPU上搭建一个手写的数字识别cnn网络,加深巩固一下

步骤

  1. 加载数据集
  2. 定义神经网络
  3. 定义损失函数
  4. 训练网络
  5. 测试网络

MNIST数据集简介

MINIST是一个手写数字数据库(官网地址:http://yann.lecun.com/exdb/mnist/),它有6w张训练样本和1w张测试样本,每张图的像素尺寸为28*28,如下图一共4个图片,这些图片文件均被保存为二进制格式

训练全过程

1.加载数据集

import torch
import torchvision
from torchvision import transforms
trainset = torchvision.datasets.MNIST(
    root='./data',
    train=True,
    download=True,
    transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ]))
trainloader = torch.utils.data.DataLoader(trainset,
                                          batch_size=64,
                                          shuffle=True
                                          )

testset = torchvision.datasets.MNIST('./data', train=False, transform=transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
]))
test_loader = torch.utils.data.DataLoader(testset
                                          , batch_size=64, shuffle=True)

展示一些训练图片

import numpy as np
import matplotlib.pyplot as plt
def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()
# 得到batch中的数据
dataiter = iter(train_loader)
images, labels = dataiter.next()

imshow(torchvision.utils.make_grid(images))

2.定义卷积神经网络

import torch
import torch.nn as nn
import torch.nn.functional as F#可以调用一些常见的函数,例如非线性以及池化等
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # input image channel, 6 output channels, 5x5 square convolution
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # 全连接 从16 * 4 * 4的维度转成120
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)#(2,2)也可以直接写成数字2
        x = x.view(-1, self.num_flat_features(x))#将维度转成以batch为第一维 剩余维数相乘为第二维
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
    def num_flat_features(self, x):
        size = x.size()[1:]  # 第一个维度batch不考虑
        num_features = 1
        for s in size:
            num_features *= s
        return num_features
net = Net()
print(net)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net.to(device)

3.定义损失和优化器

criterion = nn.CrossEntropyLoss()
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)

这里设置了 momentum=0.9 ,训练一轮的准确率由90%提到了98%

4.训练网络

def train(epochs):
    net.train()
    for epoch in range(epochs):
        running_loss = 0.0
        for i, data in enumerate(trainloader):
            # 得到输入 和 标签
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)
            # 消除梯度
            optimizer.zero_grad()
            # 前向传播 计算损失 后向传播 更新参数
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            # 打印日志
            running_loss += loss.item()
            if i % 100 == 0:    # 每100个batch打印一次
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 100))
                running_loss = 0.0
torch.save(net, 'mnist.pth')

net.train():调用方法时,模型将进入训练模式。在训练模式下,一些特定的模块,例如Dropout和Batch Normalization,将被启用。这是因为在训练过程中,我们需要使用Dropout来防止过拟合,并使用Batch Normalization来加速收敛

net.eval():调用方法时,模型将进入评估模式。在评估模式下,一些特定的模块,例如Dropout和Batch Normalization,将被禁用。这是因为在评估过程中,我们不需要使用Dropout来防止过拟合,并且Batch Normalization的统计信息应该是固定的。

5.测试网络

在其它地方导入模型测试时需要将类的定义添加到加载模型的这个py文件中

from mnist.py import Net  # 导入会运行mnist.py
net = torch.load('mnist.pth')

testset = torchvision.datasets.MNIST('./data', train=False, transform=transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
]))
testloader = torch.utils.data.DataLoader(testset
                                          , batch_size=64, shuffle=True)

correct = 0
total = 0
net.to('cpu') 
print(net)

with torch.no_grad():  # 或者model.eval()
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))

训练一轮速度

GPU:10s

CPU:10s

训练三轮速度

GPU:24.5s

CPU:28.6s

得出结论:训练数据计算量少的时候,无论在CPU上还是GPU,性能几乎都是接近的,而当训练数据计算量达到一定多的时候,GPU的优势就比较显著直观了

小小实验:

(1)加载并测试一张图片,正确则输出True

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms
import torch.nn.functional as F
import cv2
import numpy as np

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)

        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)  
        x = x.view(-1, self.num_flat_features(x))  
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


correct = 0
total = 0
net = torch.load('mnist.pth')
net.to('cpu')
# print(net)

with torch.no_grad(): 
    imgdir = '3.jpeg'
    img = cv2.imread(imgdir, 0)
    img = cv2.resize(img, (28, 28))
    trans = transforms.Compose(
        [
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])
    image = trans(img)
    image = image.unsqueeze(0)
    label = torch.tensor([int(imgdir.split('.')[0])])

    outputs = net(image)
    _, predicted = torch.max(outputs.data, 1)
    print(predicted)

print((predicted == label).item())

拿刚刚训练的模型试了6张数字图片,只有一张2是预测对的....

unsuqeeze:通过unsuqeeze(int)中的int整数,增加一个维度,int整数表示维度增加到哪儿去,且维度为1,参数:【0, 1, 2】

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用 PyTorch 框架基于 MNIST 手写数字识别模型的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义模型结构 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) # 定义训练函数 def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = nn.functional.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 定义测试函数 def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += nn.functional.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) # 设置训练参数 batch_size = 64 test_batch_size = 1000 epochs = 10 lr = 0.01 momentum = 0.5 seed = 1 log_interval = 100 # 检查是否支持 GPU use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") # 加载数据集 torch.manual_seed(seed) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transform), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transform), batch_size=test_batch_size, shuffle=True) # 初始化模型和优化器 model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum) # 训练模型 for epoch in range(1, epochs + 1): train(model, device, train_loader, optimizer, epoch) test(model, device, test_loader) ``` 这段代码会下载 MNIST 数据集并进行训练和测试,训练过程中会输出每个 batch 的 loss 值,测试过程会输出准确率。你可以根据需要调整训练参数,例如学习率、批量大小等,以优化模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值