《算法导论3rd第二十章》van Emde Boas树

前言

前面介绍的二叉堆,红黑树以及斐波那契堆,其重要的操作都要O(lgn).当特定条件下,能否够规避Ω(lglgn)下界的限制?在本章中,我们将看到:van Emde Boas树支持优先队列操作及一些其他操作,每个操作最后情况运行时间为O(lglgn)。而这种数据结构限制关键字必须为0~n-1的整数且无重复。

基本方法

在介绍van Emde Boas树之前,先了解几种动态集合的存储方法。虽然这些操作虽然无法达到O(lglgn)。

直接寻址

即位图bitmap方法。
insert,delete和member:复杂度O(1)
minimum,maximum,successor和predecessor最坏情况为O(u)

假设最小在u位置,则minimun,要查看0-u-1的位置

叠加的二叉树结构

在bitmap上面加一层二叉树。当且仅当其子树中任一个叶节点包含1,则其内部结点为1。
在这里插入图片描述
每个操作至多沿树进行一趟向上和一趟向下的过程,因此每个操作的最坏情况运行时间为O(lgn)。

这种方法仅仅比红黑树好一点。member操作为O(1).其它的都是O(lgn)

叠加的一棵高度恒定的树

叠加的树度数为 u \sqrt{u} u 。树的高度则为 l o g u u = 1 log_{\sqrt{u}} \sqrt{u} = 1 logu u =1
在这里插入图片描述
每个操作中,最多对两个大小为 u \sqrt{u} u 位的簇以及summary数组进行搜索,所以每个操作耗费 O ( u ) O(\sqrt{u}) O(u )时间

递归结构

我们对叠加树想法进行修改。叠加树用到了大小为 u \sqrt{u} u 的summary数组,数组的每项都指向一个大小为 u \sqrt{u} u 的另一个结构。现在使用结构递归,每次递归都已平方根大小缩减全域。(u,u1/2,u1/4,u1/8,…)

即对上述得到summary继续做恒定树
_2summary[2] = {1,1}
_2summary[0] 指向 summary[0],summary[1]
以此类推

原型van Emde Boas结构

根据递归式的思想。我们设计一个递归数据结构来支持这些操作。
在这里插入图片描述
以此结构设计,树的高度则为 l g l g u lglgu lglgu
在这里插入图片描述

原型van Emde Boas结构上的操作

看下原型van Emde Boas各操作复杂度

判断一个值是否在集合中
Prote-vEB-Member(V, x)
    if V.u == 2
        return V.A[x]
    else
        Prote-vEB-Member(V.cluster[high(x)], low(x))

即O(lglgn)。

查找最小元素
Proto-vEB-Minimum(V)
    if V.u == 2
        if V.A[0] == 1
            return 0
        else if V.A[1] == 1
            return 1
    else
        min-cluster = Proto-vEB-Minimum(V.summary)
        if min-cluster == NIL
            return NIL
        else
            offset = min-cluster = Proto-vEB-Minimum(V.cluster[min-cluster])
            return index(min-cluster, offset)

根据递归式 T ( u ) = 2 T ( u ) + O ( 1 ) T(u) = 2T(\sqrt{u})+O(1) T(u)=2T(u )+O(1).利用主方法解得O(lgu).

查找后继
Proto-vEB-Successor(V, x)
    if V.u == 2
        if x == 0 and V.A[1] == 1
            return 1
        else
            return NIL
    else
        offset = Proto-vEB-Successor(V.cluster[high(x)], low(x))
        if offset != NIL
            return index(high(x), offset)
        else
            succ-cluster = Proto-vEB-Successor(V.summary, high(x))
            if succ-cluster == NIL
                return NIL
            else
                offset = Proto-vEB-Minimum(V.cluster[succ-cluster])
                return index(succ-cluster, offset)

根据递归式 T ( u ) = 2 T ( u ) + O ( l g u ) T(u) = 2T(\sqrt{u})+O(lg\sqrt{u}) T(u)=2T(u )+O(lgu ).利用主方法解得O(lg u lglg u).

插入元素
Proto-vEB-Insert(V, x)
    if V.u == 2
        V.A[x] = 1
    else
        Proto-vEB-Insert(V.cluster[high(x)], x)
        Proto-vEB-Insert(V.summary, high(x))

根据递归式 T ( u ) = 2 T ( u ) + O ( 1 ) T(u) = 2T(\sqrt{u})+O(1) T(u)=2T(u )+O(1).利用主方法解得O(lgu).

删除元素

删除元素比插入更复杂,插入时总将一个summary位置为1.而删除却不能置为0。

PROTO-vEB-DELETE(V, x)
    if V.u == 2
        V.A[x] = 0
    else
        PROTO-vEB-DELETE(V.cluster[high(x)], low(x))
        inCluster = false
        for i = 0 to sqrt(u) - 1
            if PROTO-vEB-MEMBER(V.cluster[high(x)], low(i))
                inCluster = true
                break
        if inCluster == false
            PROTO-vEB-DELETE(V.summary, high(x))

根据递归式 T ( u ) = T ( u ) + O ( u l g l g u ) T(u) = T(\sqrt{u})+O(\sqrt{u} lglgu) T(u)=T(u )+O(u lglgu).利用主方法解得 O ( u l g l g u ) O(\sqrt{u} lglgu) O(u lglgu).

van Emde Boas树

van Emde Boas对 Proto-vEB结构基本上增加了max,min属性。

  • min存储了veb树中的最小元素
  • max存储了veb树中的最大元素

min和max属性是减少vEB树上这些操作的递归调用次数的关键,这两个属性有4个方面的作用:

  1. minimum和maximum操作不需要递归,因为可以直接返回min和max的值;
  2. successor操作可以避免一个用于判断值x的后继是否位于high(x)中的递归调用。这是因为x的后继位于x簇中,当且仅当x严格小于x簇的max。对于prodecessor和min情况,可以对照得到。
  3. 通过min和max的值,可以在常数时间内告知一棵vEB树是否为空、仅含一个元素或两个以上元素。如何min和max都为NIL,那么vEB树为空,如何min和max 都不为NIL但彼此相等,那么vEB树仅含一个元素。如果min和max都不为NIL且不等,那么vEB树包含两个或两个以上元素。
  4. 如果一棵vEB树为空,那么可以仅更新它的min和max值为实现插入一个元素。
    在这里插入图片描述
查找最小元素和最大元素
vEB-Tree-Minimum(V)
    return V.min
vEB-Tree-Maximum(V)
    return V.max    

操作复杂度为O(1)

判断一个值是否在集合中
vEB-Tree-Member(V, x)
    if x == V.min or x == V.max
        return true
    else if V.u == 2
        return false
    else
        return vEB-Tree-Member(V.cluster[high(x)], low(x))

即O(lglg u)。

查找后继和前驱
vEB-Tree-Successor(V, x)
    if V.u == 2
        if x == 0 and V.max == 1
            return 1
        else
            return NIL
    else if V.min != NIL and x < V.min
        return V.min
    else
        max-low = vEB-Tree-Maximum(V.cluster[high(x)])
        if max-low != NIL and low(x) < max-low
            offset = vEB-Tree-Successor(V.cluster[high(x)], low(x))
            return index(high(x), offset)
        else
            succ-cluster = vEB-Tree-Successor(V.summary, high(x))
            if succ-cluster == NIL
                return NIL
            else
                offset = vEB-Tree-Miniimum(V.cluster[succ-cluster])
                return index(succ-cluster, offset)

vEB-Tree-Predecessor(V, x)
    if V.u == 2
        if x == 1 and V.min == 0
            return 0
        else
            return NIL
    else if V.max != NIL and x > V.max
        return V.max
    else
        min-low = vEB-Tree-Minimum(V.cluster[high(x)])
        if min-low != NIL and low(x) > min-low
            offset = vEB-Tree-Predecessor(V.cluster[high(x)], low(x))
            return index(high(x), offset)
        else
            pred-cluster = vEB-Tree-Predecessor(V.summary, high(x))
            if pred-cluster == NIL
                if V.min != NIL and x > V.max
                    return V.min
                else
                    return NIL
            else
                offset = vEB-Tree-Minimum(V.cluster[pred-cluster])
                return index(pred-cluster, offset)

找到值,然后取前后的最大值,最小值即可 ,即O(lglg u)。

插入一个元素
vEB-Empty-Tree-Insert(V, x)
    V.min = x
    V.max = x
    
vEB-Tree-Insert(V, x)
    if V.min == NIL
        vEB-Empty-Tree-Insert(V, x)
    else
        if x < V.min
            exchange x with x.min
        if V.u > 2
            if vEB-Tree-Minimum(V.cluster[high(x)]) == NIL
                vEB-Tree-Insert(V.summary, high(x))
                vEB-Empty-Tree-Insert(V.cluster[high(x)], low(x))
            else
                vEB-Tree-Insert(V.cluster[high(x)], low(x))
        if x > V.max
            V.max = x

插入时,如果是最大或者最小值 ,从上往下改,不是则不用。即O(lglg u)

删除一个元素
vEB-Tree-Delete(V, x)
    if V.min == V.max
        V.min = NIL
        V.max = NIL
    else if V.u == 2
        if x == 0
            V.min = 1
        else
            V.min = 0
        V.max = V.min
    else
        if x == V.min
            first-cluster = vEB-Tree-Minimum(V.summary)
            x = index(first-cluster, vEB-Tree-Minimum(V.cluster[first-cluster]))
            V.min =x
        vEB-Tree-Delete(V.cluster[high(x)], low(x))
        if vEB-Tree-Minimum(V.cluster[high(x)]) == NIL
            vEB-Tree-Delete(V.summary, high(x))
            if x = V.max
                summary-max = vEB-Tree-Maximum(V.summary)
                if summary-max == NIL
                    V.max = V.min
                else
                    V.max = index(summary-max, vEB-Tree-Maximum(V.cluster[summary-max]))
        elseif x == V.max
            V.max = index(high(x), vEB-Tree-Maximum(V.cluster[high(x)]))

插入时,如果是最大或者最小值 ,从上往下改,不是则不用。即O(lglg u)

主要参考

van Emde Boas Trees

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值