深度学习之人物年龄预测

在这里插入图片描述

1.年龄检测

在这里插入图片描述
论文地址:《Age and Gender Classification using Convolutional Neural Networks》
论文作者提出了一个简单的类似AlexNet的网络结构,该网络总共学习了8个年龄段:

  1. 0-2
  2. 4-6
  3. 8-12
  4. 15-20
  5. 25-32
  6. 38-43
  7. 48-53
  8. 60-100

注意:这些年龄段不是连续的
首先,要搞懂检测年龄适合用回归还是用分类来做
举个栗子:

1. 回归
在这里插入图片描述

2. 分类
在这里插入图片描述
年龄预测是基于面部外观,有的人保养的好,显得年轻,实际年龄与测得会有差别。在不结合其它有关信息作推断情况下,网络模型很难预测到实际的真实年龄。若看作是回归问题,模型很难预测到图像中年龄的一个准确值,而看作是分类问题,预测一个年龄段相对来说模型更容易训练,比回归产生更高的准确性。

2.思路方法

自动识别年龄步骤:

1. 检测出输入图像或视频中的人脸
2. 提取面部感兴趣区域(ROI)
3. 用年龄检测器预测人物的年龄
4. 返回结果

对于检测人脸的分类器:

分类器 优缺点
Haar级联 速度快,嵌入式设备上运行,但准确性低
HOG +线性SVM 相比Haar级联精确,但速度慢,对遮挡,面部角度变化时检测效果不好
深度学习检测器 相比以上两者效果最佳,但需消耗更多计算资源

3.代码实现

环境:

  • win10
  • pycharm
  • anaconda3
  • python3.7
  • opencv4.2.0

对于OpenCV尽量用最新版本,可参考这篇仅一个命令行简单快速安装:https://blog.csdn.net/y459541195/article/details/104851892

文件结构:

在这里插入图片描述

3.1 单张图像检测代码
import numpy as np
import cv2

"""
#图片年龄预测
执行:
python test_age.py 

"""
# 检测年龄段
AGE_LIST = ["(0-2)","(4-6)","(8-12)","(15-20)","(25-32)","(38-43)","(48-53)","(60-100)"]

# 人脸检测模型路径
prototxtPathF ="./models/face_detector/face_deploy.prototxt"
weightsPathF = "./models/face_detector/res10_300x300_ssd_iter_140000.caffemodel"
# 加载人脸模型
faceNet = cv2.dnn.readNet(prototxtPathF,weightsPathF)

# 年龄检测模型
prototxtPathA ="./models/age_detector/age_deploy.prototxt"
weightsPathA = "./models/age_detector/age_net.caffemodel"
#加载模型
ageNet = cv2.dnn.readNet(prototxtPathA,weightsPathA)

#获取图像
image = cv2.imread("./input/test01.jpg")
src = image.copy()
(h,w)= image.shape[:2]

# 构造blob
blob = cv2.dnn.blobFromImage(image,1.0,(300,300),
                             (104,177,123))
# 送入网络计算
faceNet.setInput(blob)
detect = faceNet.forward()
# 检测
for i in range(0,detect
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

圆滚熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值