算法竞赛进阶指南-第四章-质数

文章介绍了质数的基本概念,包括如何使用试除法和Miller-Robbin算法进行质数判定,以及Eratosthenes筛法和线性筛法在筛选质数中的应用。此外,还提到了质因数分解的方法及其在算术基本定理中的重要性。
摘要由CSDN通过智能技术生成

jtitle: 算法竞赛进阶指南-第四章-质数
date: 2023-02-03 09:25:15
tags:

数学知识

质数

若一个正整数无法被除了1和他自身之外的任何自然数整除,则称该数为质数(或素数),否则称该正整数为合数

对于一个足够大的整数N,不超过N的质数大约有N/lnN个,即每lnN个数中大约有1个质数

质数的判定

试除法

我们只需要扫描2~genhaoN之间的所有整数,依次检查它们能否整除N,若都不能整除,则N是质数,否则N是合数

特判0和1这两个整数,它们既不是质数,也不是合数

bool is_prime(int n)
{
    if(n < 2) return false;
    for(int i = 2; i <= sqrt(n); i++)
        if(n % i == 0) return false;
    return true;
}

Miller-Robbin(效率更高的随机性算法,有较小概率把合数错误判定为质数,但多次判定合起来的错误概率趋近于零)

质数的筛选

给定一个整数N,求出1~N之间的所有质数,称为质数的筛选问题

Eratosthenes筛法(O(NloglogN))

任意整数x的倍数都不是质数.

image-20230203095546733

void primes(int n)
{
    memset(v,0,sizeof(v));
    for(int i = 2; i <= n; i++)
    {
        if(v[i]) continue;
        cout << i << endl;
        for(int j = i ; j<= n/i; j++) v[i*j] = i;
    }
}
线性筛法O(N)

通过"从大到小积累质因子"的方式标记每个合数,即让12只有322一种产生方式.

设数组v记录每个数的最小质因子,我们按照以下步骤维护v

1.依次考虑2~N之间的每一个数i

2.若v[i] = i,说明i是质数

3.扫描不大于v[i]的每个质数p,令v[ip] = p.也就是在i的基础上积累一个质因子p,p就是合数ip的最小质因子

每个合数i*p只会被它的最小质因子p筛一次,时间复杂度为O(N)

int v[MAX_N],prime[MAX_N];
void primes(int n)
{
    memset(v,0,sizeof(v));
    m = 0;//质数数量
    for(int i = 2; i <= n; i++)
    {
        if(v[i] == 0)
        {
            v[i] = i;
            prime[++m] = i;
        }
        for(int j = 1; j <= m; j++)
        {
            //i有比prime[j]更小的质因子,或者超出n的范围,停止循环
            if(prime[j] > v[i] || prime[j] > n/i) break;
            //prime[j]是合数i*prime[j]的最小质因子
            v[i*prime[j]] = prime[j];
        }
    }
    for(int i = 1; i <= m; i++) cout << prime[i] << endl;
}

质因数分解

算术基本定理

任何一个大于1的正整数都能唯一分解为有限个质数的乘积

试除法(O(sqrt(N))

结合质数判定的"试除法"和指数筛选的"Eratosthenes筛法",我们可以扫描2~根号N的每个数d,若d能整除N,则从N中除掉所有的因子d,同时累计除去的d的个数

void divede(int n)
{
    m = 0;
    for(int i = 2; i <= sqrt(n); i++)
    {
        if(n % i == 0)
        {
            p[++m] = i,c[m] = 0;
            while(n % i == 0) n/=i, c[m]++;
        }
    }
    if(n > 1)
        p[++m] = n, c[m] = 1;
    for(int i = 1; i <= m; i++)
        cout << p[i] << '^' << c[i] << endl;
}

Pollard’s Rho算法是一个比"试除法"效率更高的质因数分解算法

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值