2021李林880题- 函数、极限、连续-基础题

本文通过一系列选择题和填空题,深入探讨了高等数学中的函数单调性、极限存在条件、等阶无穷小、连续性等核心概念。题目涉及三角函数的单调性、无穷小的比较、泰勒公式应用等多个知识点,每个问题都给出了详细的解答过程,有助于巩固和理解相关理论。
摘要由CSDN通过智能技术生成

好久没有写高等的文章了,今天百忙中抽出一些时间记录下最近的心得。临近考试,也没有太多空余的时间进行整理。
首先是1道选择题,设函数 f ( x ) = cos ⁡ ( s i n x ) , g ( x ) = sin ⁡ ( c o s x ) f(x)=\cos(sinx),g(x)=\sin(cosx) f(x)=cos(sinx),g(x)=sin(cosx),问函数单调性。
x ∈ ( 0 , π 2 ) x\in(0,\frac{\pi}{2}) x(0,2π)时。
由函数 f ( u ) = c o s u f(u)=cosu f(u)=cosu g ( u ) = sin ⁡ u g(u)=\sin u g(u)=sinu在区间 u ∈ ( 0 , π 2 ) u\in (0,\frac{\pi}{2}) u(0,2π)上分别递减和递增,因此对于 f ( x ) = c o s ( s i n x ) f(x)=cos(sinx) f(x)=cos(sinx),由于sinx递增,而cosx递减,因此f(x)单调递减。同理,cosx递减,而sinx递增,因此g(x)也单调递减。
接着是另1个选择题,已知 lim ⁡ x → ∞ ( x 2 x + 1 − a x − b ) = 0 \lim_{x\to\infty}\left(\frac{x^{2}}{x+1}-ax-b\right)=0 limx(x+1x2axb)=0,求a和b的值。
直接通分可得 f ( x ) = x 2 − a x ( x + 1 ) − b ( x + 1 ) x + 1 = ( 1 − a ) x 2 − ( a + b ) x − b x + 1 f(x)=\frac{x^{2}-ax(x+1)-b(x+1)}{x+1}=\frac{(1-a)x^{2}-(a+b)x-b}{x+1} f(x)=x+1x2ax(x+1)b(x+1)=x+1(1a)x2(a+b)xb

因为函数极限存在,因此有 { 1 − a = 0 a + b = 0 \begin{cases} 1-a=0\\ a+b=0\\ \end{cases} { 1a=0a+b=0,即 a = 1 , b = − 1 a=1,b=-1 a=1,b=1
接着来看1个选择题,当 x → 0 x\to 0 x0时, ( 1 + a x 2 ) 1 3 − 1 (1+ax^{2})^{\frac{1}{3}}-1 (1+ax2)311 c o s x − 1 cosx-1 cosx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值