对话系统论文集(12)-状态跟踪

问题:
含有state的数据太少,正确得到state(对花槽)很难。
背景:
全监督是:所有数据都是标记的
无监督:所有数据都unlabeled,目标是将数据进行分类。
半监督:部分标记,部分未标记
创新点:

  • 没有使用RL

  • 未标记数据:
    1)通过encoder-decoder产生explicit text span(St)(对话历史):
    输入是Ut和Rt-1(向量链接),本次提问和上一次回答。
    经过GRU。decoder每一步(注意力机制)输出Yj(St,Rt)。

在这里插入图片描述
图中的上标c是copyNet,指的是,出入的词可能出现在输出吗,(主要是为了凸显关键词)
2)再将有Rt的对话输入产生更有意义的St,但是
要有正确的St的标注,那个我们换一种方法生成St(针对未标注数据),将Rt-1、Ut、Rt输入,通过VAE找到St

先验和后验通过KL散度,使得后验接近先验

实验结果:
对比的情况太少。没有RL选项,而且只针对state tracker,没有回复的性能对比。

反馈:
state生成思路 新颖,是否可以和RL结合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值