问题:
含有state的数据太少,正确得到state(对花槽)很难。
背景:
全监督是:所有数据都是标记的
无监督:所有数据都unlabeled,目标是将数据进行分类。
半监督:部分标记,部分未标记
创新点:
-
没有使用RL
-
未标记数据:
1)通过encoder-decoder产生explicit text span(St)(对话历史):
输入是Ut和Rt-1(向量链接),本次提问和上一次回答。
经过GRU。decoder每一步(注意力机制)输出Yj(St,Rt)。
图中的上标c是copyNet,指的是,出入的词可能出现在输出吗,(主要是为了凸显关键词)
2)再将有Rt的对话输入产生更有意义的St,但是
要有正确的St的标注,那个我们换一种方法生成St(针对未标注数据),将Rt-1、Ut、Rt输入,通过VAE找到St
先验和后验通过KL散度,使得后验接近先验
实验结果:
对比的情况太少。没有RL选项,而且只针对state tracker,没有回复的性能对比。
反馈:
state生成思路 新颖,是否可以和RL结合。