深度学习系列(一-)- 与传统的机器学习的区别

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/yan88888888888888888/article/details/83685024

自己总结的,有不对的希望指出。

1、传统的需要人工去提取特征、机器学习不需要

2、传统的机器学习表达能力有限,深度学习表达能力强

3、深度学习适合处理大数据,而数据量比较小的时候,用传统机器学习方法也许更合适。

4、深度学习十分地依赖于高端的硬件设施,因为计算量实在太大了!深度学习中涉及很多的矩阵运算,因此很多深度学习都要求有GPU参与运算,因为GPU就是专门为矩阵运算而设计的。相反,普通的机器学习随便给一台破电脑就可以跑

5、时间维度上传统的机器学习一般训练时间短,深度学习时间长,但是深度学习一旦训练好,就快了。

展开阅读全文

没有更多推荐了,返回首页