传统机器学习与深度学习的区别

博客内容比较了深度学习与传统机器学习的区别,指出深度学习通过端到端训练整合了特征提取和分类器,而传统机器学习则涉及手工特征工程。作者提出疑问,对于跨域任务,端到端训练是否在数据集迁移时具有与分步方法相同的鲁棒性,这需要进一步的思考和验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统机器学习(traditionla machine learning),分为两步为特征提取(手工工程handcrafted)和可训练的分类器

深度学习(deep learning)一步到位,过程包含了各个level特征提起(low-mid-high)以及分类器,这些都是可训练的。
个人认为,之后一些dl子领域的任务,如行人重识别和步态识别都使用了end2end网络,目的也是发挥‘完全深度神经网络’的能力。但这个端到端的训练,在一个数据集到另个数据集上的表现(cross-domian)上有使用分步(或者handcrafted)鲁棒性强吗?有待思考与查证。

在这里插入图片描述

ref:https://atcold.github.io/pytorch-Deep-Learning/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值