视频质量评价VQA公开数据集介绍

本文介绍了多个视频质量评估(VQA)数据集,包括YouTube-UGC、LIVE-VQC、MSU SR-QA、MSU NR VQA、MSU FR VQA、KoNViD-1k等,这些数据集涵盖了不同类型的视频失真、内容多样性和质量评价,旨在推动VQA和深度学习在音视频领域的应用,特别是直播和社交视频质量的提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YouTube-UGC (YouTube UGC dataset)

  1. 下载网址https://media.withyoutube.com/
  2. 介绍:这个YouTube数据集是根据知识共享许可证上传到YouTube的数千个用户生成内容(UGC)的样本。创建该数据集是为了帮助推进UGC视频的视频压缩和质量评估研究。该数据集目前包含约1500个(YouTube转码前)视频剪辑。每个视频的长度约为20秒。有两个版本的原始视频可供选择:RAW YUV和H264 CRF 10。还为游戏、体育和Vlog视频提供VP9变体。

在这里插入图片描述
3. 大小:
在这里插入图片描述

OCR-VQA(Optical Character Recognition - Visual Question Answering)数据集评估指标可以根据任务的性质和目标进行选择。以下是一些常用的评估指标: 1. 准确率(Accuracy):在OCR-VQA任务中,最常用的评估指标是准确率。它衡量模型回答问题的正确率。如果模型给出的答案与人工标注的答案完全匹配,则计为1,否则计为0。最终的准确率是所有样本的平均值。 2. Top-k Accuracy:为了考虑到可能存在多个正确答案的情况,可以使用Top-k准确率。在Top-k准确率中,将模型预测的答案与人工标注的答案进行比较,只要模型预测的答案在标注答案的前k个里面,就认为是正确的。Top-k准确率可以更全面地评估模型的性能。 3. 结果排序(Ranking):在OCR-VQA任务中,还可以使用排序评估指标,例如Mean Rank和Median Rank。这些指标衡量模型在给定问题下对所有可能答案的排序性能。较好的模型应该能够将正确答案排在前面。 4. 分布式评估(Distributional Evaluation):除了对单个样本的准确性进行评估,还可以考虑模型对整个标注答案分布的拟合程度。例如,模型的预测分布应与人工标注的分布相似,可以使用KL散度或交叉熵等指标进行评估。 这些指标可以根据具体的OCR-VQA任务和评估需求进行选择和组合。同时,还可以根据任务的特点,设计和使用更加适合的评估指标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码流怪侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值