欧拉图

欧拉图是指图中存在欧拉通路或者欧拉回路的特殊图论概念。无向连通图是欧拉图当且仅当所有结点度数为偶数,而有向连通图是欧拉图则要求每个结点的入度等于出度。欧拉通路的存在条件涉及到奇数度结点的数量。此外,文章提到了几个与欧拉图相关的编程题目,涉及有向和无向的欧拉通路及回路问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义:

通过图(无向图或有向图)中所有边且每边仅通过一次通路称为欧拉通路,相应的回路称为欧拉回路。具有欧拉回路的图称为欧拉图(Euler Graph),具有欧拉通路而无欧拉回路的图称为半欧拉图。

定理:

  • 无向连通图G是欧拉图,当且仅当G不含奇数度结点(G的所有结点度数为偶数);
    1. 连通
    2. 所有结点度数为偶数
  • 无向连通图G含有欧拉通路,当且仅当G有零个或两个奇数度的结点;
    1. 连通
    2. 奇数度的节点有 0 个或 2 个,其余都为偶数
  • 有向连通图D是欧拉图,当且仅当该图为连通图且D中每个结点的入度=出度
    1. 忽略边的方向后连通
    2. 所有结点度数为偶数
  • 有向连通图D含有欧拉通路,当且仅当该图为连通图且D中除两个结点外,其余每个结点的入度=出度,且此两点满足deg-(u)-deg+(v)=±1。(起始点s的入度=出度-1,结束点t的出度=入度-1 或两个点的入度=出度)
    1. 忽略边的方向后连通
    2. 起始点:入度 = 出度 - 1;结束点:入度 = 出度 + 1
    3. 除起始点和结束点外,剩余结点的度数为偶数

题目:

有向欧拉通路:UVA - 10129 Play on Words
无向欧拉回路:UVA - 10054 The Necklace
有向欧拉回路:UVA - 10596 Morning Walk

欧拉图打印:

//用于无向图
void euler (int u) {
    for (int v = 0; v < n; v++)
        if (G[u][v] && !vis[u][v]) {
            vis[u][v] = vis[v][u] = 1;
            euler(v);
            printf("%d %d\n", u, v);//输出逆序
        }
}
//用于有向图时,把 vis[u][v] = vis[v][u] = 1 改成 vis[u][v]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值