定义:
通过图(无向图或有向图)中所有边且每边仅通过一次通路称为欧拉通路,相应的回路称为欧拉回路。具有欧拉回路的图称为欧拉图(Euler Graph),具有欧拉通路而无欧拉回路的图称为半欧拉图。
定理:
- 无向连通图G是欧拉图,当且仅当G不含奇数度结点(G的所有结点度数为偶数);
- 连通
- 所有结点度数为偶数
- 无向连通图G含有欧拉通路,当且仅当G有零个或两个奇数度的结点;
- 连通
- 奇数度的节点有 0 个或 2 个,其余都为偶数
- 有向连通图D是欧拉图,当且仅当该图为连通图且D中每个结点的入度=出度
- 忽略边的方向后连通
- 所有结点度数为偶数
- 有向连通图D含有欧拉通路,当且仅当该图为连通图且D中除两个结点外,其余每个结点的入度=出度,且此两点满足deg-(u)-deg+(v)=±1。(起始点s的入度=出度-1,结束点t的出度=入度-1 或两个点的入度=出度)
- 忽略边的方向后连通
- 起始点&