离散数学数理逻辑部分【2】


在这里插入图片描述

命题逻辑

等值演算公式的使用【重点】

( ( P → Q ) ∧ ( Q → R ) ) → ( P → R ) ((P \rightarrow Q)\land (Q\rightarrow R))\rightarrow (P\rightarrow R) ((PQ)(QR))(PR)
⇔ ¬ ( ( ¬ P ∨ Q ) ∧ ( ¬ Q ∨ R ) ) ∨ ( ¬ P ∨ R ) \Leftrightarrow \lnot((\lnot P \lor Q)\land (\lnot Q \lor R))\lor (\lnot P \lor R) ¬((¬PQ)(¬QR))(¬PR)
⇔ ¬ ( ¬ P ∨ Q ) ∨ ¬ ( ¬ Q ∨ R ) ∨ ¬ P ∨ R \Leftrightarrow \lnot(\lnot P \lor Q) \lor \lnot (\lnot Q \lor R) \lor \lnot P \lor R ¬(¬PQ)¬(¬QR)¬PR
⇔ ( P ∧ ¬ Q ) ∨ ( Q ∧ ¬ R ) ∨ ¬ P ∨ R \Leftrightarrow (P \land \lnot Q)\lor (Q\land \lnot R) \lor \lnot P \lor R (P¬Q)(Q¬R)¬PR
⇔ ( ( P ∧ ¬ Q ) ∨ ¬ P ) ∨ ( ( Q ∧ ¬ R ) ∨ R ) \Leftrightarrow ((P \land \lnot Q)\lor \lnot P)\lor ((Q\land \lnot R)\lor R) ((P¬Q)¬P)((Q¬R)R)
⇔ ( ( P ∨ ¬ P ) ∧ ( ¬ Q ∨ ¬ P ) ) ∨ ( ( Q ∨ R ) ∧ ( ¬ R ∨ R ) ) \Leftrightarrow ((P\lor \lnot P)\land (\lnot Q \lor \lnot P))\lor ((Q\lor R)\land(\lnot R \lor R)) ((P¬P)(¬Q¬P))((QR)(¬RR))
⇔ ( 1 ∧ ( ¬ Q ∨ ¬ P ) ) ∨ ( ( Q ∧ R ) ∧ 1 ) \Leftrightarrow (1\land (\lnot Q \lor \lnot P))\lor ((Q \land R)\land 1) (1(¬Q¬P))((QR)1)
⇔ ( ¬ Q ∨ ¬ P ) ∨ ( Q ∨ R ) \Leftrightarrow (\lnot Q \lor \lnot P)\lor (Q\lor R) (¬Q¬P)(QR)
⇔ ( ¬ Q ∨ Q ) ∨ ¬ P ∨ R \Leftrightarrow (\lnot Q \lor Q)\lor \lnot P \lor R (¬QQ)¬PR
⇔ 1 ∨ ¬ P ∨ R \Leftrightarrow 1\lor \lnot P \lor R 1¬PR
⇔ 1 \Leftrightarrow 1 1
∴ 此公式为重言式 \therefore 此公式为重言式 此公式为重言式

  • 解题思路:

    • 先消掉 → ⇔ \rightarrow \Leftrightarrow →⇔
    • 括号 ( ) () ()前面的 ¬ \lnot ¬,用德摩根律
    • 多层结构变单层,能化简到化简,能消掉的消掉(同一律,零律,矛盾律,排中律,双重否定律,吸收律,密等律)
    • 使用交换律,结合律,把相同的变元或子公式放到一起来化简单
    • 注意吸收律有时很有用 P ∧ ( ( ( R ∨ Q ) ∧ ¬ Q ) ∨ P ) ⇔ P P\land (((R \lor Q)\land \lnot Q)\lor P)\Leftrightarrow P P(((RQ)¬Q)P)P
    • 证明2个公式等价时一般从复杂公式向简单公式方向变换,但如果2个公式的复杂程度差不多,则都可以尝试变换,更容易找到思路。
  • 等值演算也是考试德重要内容,作者就不在这里过多举例了。都是固定的套路

  • 编辑公式太耗时了,希望大家把平时的课后题和例题好好看看、做做。

析取范式和合取范式【重点】

  • 文字:命题变项及其否定的总称,例如:p, ¬p
  • 简单析取式:有限个文字构成的析取式,如 p, ¬q, p∨¬q, p∨q∨r, …
  • 简单合取式:有限个文字构成的合取式,如 p, ¬q, p∧¬q, p∧q∧r
  • 析取范式:由有限个简单合取式组成的析取式A1∨A2∨…∨Ar, 其中A1,A2,…,Ar是简单合取式。例如: (p∧¬q)∨(p∧q∧r)
  • 合取范式:由有限个简单析取式组成的合取式A1∧A2∧…∧Ar , 其中A1,A2,…,Ar是简单析取式。例如: (p∨¬q)∧(p∨q∨r)
  • 范式:析取范式与合取范式的统称

范式存在定义【了解】

  • 定理任何命题公式都存在着与之等值的析取范式与合取范式

求公式A的范式的步骤:【重点】

  1. 消去A中的→, ↔(若存在)
  2. 否定联结词¬的内移或消去
  3. 使用分配律
    • ∧对∨分配(析取范式)
    • ∨对∧分配(合取范式)
  • 公式的范式存在,但不惟一

在这里插入图片描述

极大项和极小项【重点】

  • 定义
    • 在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一=次,而且第i(1≤i≤n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项)。
    • n个命题变项产生2n个极小项和2n个极大项
    • m i m_i mi表示第i个极小项,其中 i i i是该极小项成真赋值的十进制表示. 用 M i M_i Mi表示第 i i i个极大项,其中 i i i是该极大项成假赋值的十进制表示, m i ( M i ) m_i(M_i) mi(Mi)称为极小项(极大项)的名称。
    • m i m_i mi M i M_i Mi的关系: ¬ m i ⇔ M i , ¬ M i ⇔ m i ¬m_i⇔ M_i , ¬M_i⇔m_i ¬miMi,¬Mimi
      在这里插入图片描述
      在这里插入图片描述
  • 极大项和极小项的性质
    • 任意两个不同极小项的合取必为假; m i ∧ m j = F , i ≠ j m_i∧m_j = F, i≠j mimj=F,i=j任意两个不同极大项的析取必为真; M i ∨ M j = T , i ≠ j M_i∨M_j = T, i≠j MiMj=T,i=j
    • 极大项的否定是极小项;极小项的否定是极大项;
    • 所有极小项的析取为永真公式;所有极大项的合取是永假公式

主合取范式和主析取范式【重点】

在这里插入图片描述

  • 主析取范式=极小项(或小项,m,简单合取式)的析取A的主析取范式: 与A等值的主析取范式
  • 主合取范式=极大项(或大项,M,简单析取式)的合取A的主合取范式: 与A等值的主合取范式
  • m的下标确定:每个变元有 ¬ \lnot ¬为0,没有为1
  • M的下标确定:每个变元有 ¬ \lnot ¬为1,没有为0
    在这里插入图片描述
    在这里插入图片描述

等式演算求主析取范式【重点】

在这里插入图片描述

真值表求主析取范式【了解】

在这里插入图片描述

主范式的应用【重点】

  1. 求公式的成真赋值和成假赋值

    • 在主析取范式的结果中,全部都是成真赋值;在主合取范式的结果中,全部都是成假赋值
    • 例如 ( p → ¬ q ) → r ⇔ m 1 ∨ m 3 ∨ m 5 ∨ m 6 ∨ m 7 (p→¬q)→r ⇔ m_1∨m_3∨m_5∨ m_6∨m_7 (p¬q)rm1m3m5m6m7
      • 其成真赋值为001, 011, 101, 110, 111,
      • 其余的赋值 000, 010, 100为成假赋值
  2. 判断公式的类型

    • 设A含n个命题变项,则A为重言式⇔A的主析取范式含 2 n 2^n 2n个极小项⇔A的主合取范式为1.
    • A为矛盾式⇔ A的主析取范式为0⇔ A的主合取范式含 2 n 2^n 2n个极大项
    • A为非重言式的可满足式
      ⇔A的主析取范式中至少含一个且不含全部极小项
      ⇔A的主合取范式中至少含一个且不含全部极大
  3. 判断两个公式是否等值
    在这里插入图片描述

推理部分【了解】

  • 推理有效,指的是它的结论是它前提的合乎逻辑的结果
  • 如果它的前提都为真,那么所得的结论也必然为真,而并不是要求前提或结论一定为真或为假,如果推理是有效的话,那么不可能它的前提都为真时,而它的结论为假

推理的基本概念和推理形式【了解】

  • 设G,H是公式,对任意解释I,如果I满足G,那么I满足H,则称H是G的逻辑结果(或称G蕴涵H),记为G⇒H,此时称G为前提,H为结论

判定定理【了解】

  • 定理一:设G,H是公式,H是G的逻辑结果当且仅当G→H为永真公式。
  • 定理二:公式H是前提集合 Г = G 1 , G 2 , … , G n Г={G_1,G_2,…,G_n} Г=G1,G2,,Gn的逻辑结果当且仅当 G 1 ∧ G 2 ∧ … ∧ G n → H G_1∧G_2∧…∧G_n→H G1G2Gn为永真公式。

推理的形式结构

  • 前提: A 1 , A 2 , … , A k A_1, A_2, … , A_k A1,A2,,Ak
  • 结论: B
  • 若推理正确,则记作: A 1 ∧ A 2 ∧ … ∧ A k ⇒ B A_1∧A_2∧…∧A_k⇒B A1A2AkB

判断推理是否正确的方法

在这里插入图片描述

  • 解题步骤:
    1. 将命题符号化
    2. 写出前提、结论或推理的形式结构
    3. 判断或证明推理结果是否正确,也就是判断一个蕴含式是否是重言.

真值表法

  • 证明 ( p → q ) ∧ p ⇒ q (p \rightarrow q)\land p\Rightarrow q (pq)pq
    • 列出 ( p → q ) ∧ p → q (p \rightarrow q)\land p\rightarrow q (pq)pq真值表为
p q ( p → q ) ∧ p → q (p \rightarrow q)\land p\rightarrow q (pq)pq
0 01
0 11
1 01
1 11

∴ \therefore 公式为重言式,即有 ( p → q ) ∧ p ⇒ q (p \rightarrow q)\land p\Rightarrow q (pq)pq

等值演算的方法

  • 推理正确 = 公式 𝑨 𝟏 ∧ 𝑨 𝟐 ∧ 𝑨 𝟑 ∧ ⋯ ∧ 𝑨 𝒏 → 𝑩 𝑨_𝟏 ∧ 𝑨_𝟐 ∧ 𝑨_𝟑 ∧ ⋯ ∧ 𝑨_𝒏 → 𝑩 A1A2A3AnB为重言式
  • 判断推理是否正确
    • 若今天是1号,则明天是5号. 今天是1号. 所以明天是5号
    • p:今天是1号,q:明天是5号
    • 推理的形式结构为: ( p → q ) ∧ p → q (p→q)∧p→q (pq)pq
    • ( p → q ) ∧ p → q (p→q)∧p→q (pq)pq
      ⇔ ¬ ( ( ¬ p ∨ q ) ∧ p ) ∨ q ⇔ ¬((¬p∨q)∧p)∨q ¬((¬pq)p)q
      ⇔ ¬ p ∨ ¬ q ∨ q ⇔ 1 ⇔ ¬p∨¬q∨q ⇔ 1 ¬p¬qq1
      得证推理正确

主析取范式法

  • 若今天是1号,则明天是2号. 明天是2号. 所以今天是1号
    • p:今天是1号,q:明天是2号
    • 推理的形式结构为: (p→q)∧q→p
    • ( p → q ) ∧ q → p (p→q)∧q→p (pq)qp
      ⇔ ( ¬ p ∨ q ) ∧ q → p ⇔ (¬p∨q)∧q→p (¬pq)qp
      ⇔ ¬ ( ( ¬ p ∨ q ) ∧ q ) ∨ p ⇔ ¬ ((¬p∨q)∧q)∨p ¬((¬pq)q)p
      ⇔ ¬ q ∨ p ⇔ ¬q∨p ¬qp
      ⇔ ( ¬ p ∧ ¬ q ) ∨ ( p ∧ ¬ q ) ∨ ( p ∧ ¬ q ) ∨ ( p ∧ q ) ⇔ (¬p∧¬q)∨(p∧¬q)∨ (p∧¬q)∨(p∧q) (¬p¬q)(p¬q)(p¬q)(pq)
      ⇔ m 0 ∨ m 2 ∨ m 3 ⇔ m_0∨m_2∨m_3 m0m2m3
    • 结果不含 m 1 m_1 m1, 故01是成假赋值,所以推理不正确.

直接证明法【重点】

  • P:证明过程中引入前提时标记

  • T:证明过程中推出新的结论时标记

  • 要保证每个前提都是真是真的

  • 前提: p ∨ q , p → ¬ r , s → t , ¬ s → r , ¬ t p\lor q,p\rightarrow \lnot r,s \rightarrow t,\lnot s \rightarrow r ,\lnot t pq,p¬r,st,¬sr,¬t

  • 结论: q q q
    1️⃣ ¬ t \lnot t ¬t-----------P
    2️⃣ s → t s\rightarrow t st------P
    3️⃣ ¬ s \lnot s ¬s-----------T1️⃣2️⃣
    4️⃣ ¬ s → r \lnot s\rightarrow r ¬sr—p
    5️⃣ r r r-------------T3️⃣4️⃣
    6️⃣ p → ¬ r p\rightarrow \lnot r p¬r----P
    7️⃣ ¬ p \lnot p ¬p-----------T5️⃣5️⃣
    8️⃣ p ∨ q p\lor q pq--------P
    9️⃣ q q q--------------T7️⃣8️⃣

推理定律——重言蕴涵式

公式形式公式名称
A ⇒ ( A ∨ B ) A ⇒ (A∨B) A(AB)附加律
( A ∧ B ) ⇒ A (A∧B) ⇒ A (AB)A化简律
( A → B ) ∧ A ⇒ B (A→B)∧A ⇒ B (AB)AB假言推理
( A → B ) ∧ ¬ B ⇒ ¬ A (A→B)∧¬B ⇒ ¬A (AB)¬B¬A拒取式
( A ∨ B ) ∧ ¬ B ⇒ A (A∨B)∧¬B ⇒ A (AB)¬BA析取三段论
( A → B ) ∧ ( B → C ) ⇒ ( A → C ) (A→B)∧(B→C) ⇒ (A→C) (AB)(BC)(AC)假言三段论
( A ↔ B ) ∧ ( B ↔ C ) ⇒ ( A ↔ C ) (A↔B)∧(B↔C) ⇒ (A↔C) (AB)(BC)(AC)等价三段论
( A → B ) ∧ ( C → D ) ∧ ( A ∨ C ) ⇒ ( B ∨ D ) (A→B)∧(C→D)∧(A∨C) ⇒ (B∨D) (AB)(CD)(AC)(BD)构造性二难
( A → B ) ∧ ( ¬ A → B ) ⇒ B (A→B)∧(¬A→B) ⇒ B (AB)(¬AB)B构造性二难(特殊形式)
( A → B ) ∧ ( C → D ) ∧ ( ¬ B ∨ ¬ D ) ⇒ ( ¬ A ∨ ¬ C ) (A→B)∧(C→D)∧( ¬B∨¬D) ⇒ (¬A∨¬C) (AB)(CD)(¬B¬D)(¬A¬C)破坏性二难

构造证明法【重点,实在记不住就用直接证明法】

  • 利用推理定义,进行证明
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值