Kubernetes网络三部曲之三 ~ NodePort vs LoadBalancer vs Ingress

前言

在上一篇《Kubernetes网络三部曲~Service网络》中,波波讲解了K8s的4层网络栈中的第2层Service网路。有了Service网络,K8s集群内的应用可以通过服务名/ClusterIP进行统一寻址和访问,而不需要关心应用集群中到底有多少个Pods,Pod的IP是什么,会不会变化,以及如何以负载均衡方式去访问等问题。但是,K8s的Service网络只是一个集群内部网络,集群外部是无法直接访问的。而我们发布的应用,有些是需要暴露出去,要让外网甚至公网能够访问的,这样才能对外输出业务价值。K8s如何将内部服务暴露出去?这是波波在本文要展开分析的问题。

在这里插入图片描述

在讲到K8s如何接入外部流量的时候,大家常常会听到NodePort,LoadBalancer和Ingress等概念,这些概念都是和K8s外部流量接入相关的,它们既是不同概念,同时又有关联性。下面我们分别解释这些概念和它们之间的关系。

NodePort

先提前强调一下,NodePort是K8s将内部服务对外暴露的基础,后面的LoadBalancer底层有赖于NodePort

之前我们讲了K8s网络的4层抽象,Service网络在第2层,节点网络在第0层。实际上,只有节点网络是可以直接对外暴露的,具体暴露方式要看数据中心或公有云的底层网络部署,但不管采用何种部署,节点网络对外暴露是完全没有问题的。那么现在的问题是,第2层的Service网络如何通过第0层的节点网络暴露出去?我们可以回看一下K8s服务发现的原理图,如下图所示,然后不妨思考一下,K8s集群中有哪一个角色,即掌握Service网络的所有信息,可以和Service网络以及Pod网络互通互联,同时又可以和节点网络打通?

在这里插入图片描述

答案是Kube-Proxy。上一篇我们提到Kube-Proxy是K8s内部服务发现的一个关键组件,事实上,它还是K8s将内部服务暴露出去的关键组件。Kube-Proxy在K8s集群中所有Worker节点上都部

### 关于DeepSeek三部曲的详细介绍 #### 《DeepSeek:从入门到精通》 此书由清华大学发布,旨在帮助读者全面掌握DeepSeek技术的基础知识及其实际应用场景。书中不仅涵盖了DeepSeek的核心算法和技术原理,还提供了丰富的案例分析和实践指导[^1]。该书籍共计35页,重点在于展示DeepSeek如何通过高效的提示语技巧优化多场景下的工作流程,例如数据分析、PPT制作、海报设计以及视频生成等任务。此外,本书深入探讨了人机协作的方式,从而显著提高生产力和创新力[^4]。 #### DeepSeek-R1 论文解读 作为DeepSeek系列的重要组成部分之一,《DeepSeek三部曲》中的第二部分专注于解析DeepSeek-R1的技术细节和发展历程。相较于之前的版本,DeepSeek-R1解决了早期模型存在的诸多问题,如可读性和语言一致性不足等挑战。其构建方法采用了分阶段训练策略,即先利用少量冷启动数据微调基础模型(DeepSeek-V3-Base),再结合强化学习(RL)与监督微调(SFT)相结合的方法进一步完善模型性能。最终形成的DeepSeek-R1能够达到与OpenAI-o1-1217相近的表现水平[^2]。 #### 清华大学 DeepSeek 三部曲整体概述 为了应对快速发展的AI领域所带来的机遇与挑战,“清华系”的DeepSeek团队携手元石科技共同打造了一套完整的解决方案——DeepSeek三部曲。这套方案覆盖了从理论学习到实战运用直至个人职业发展等多个层面的内容体系。“学”指的是扎实理解人工智能特别是DeepSeek相关基础知识;“用”强调将所学到的知识灵活应用于不同行业的真实环境中去解决问题或者创造价值;而“赢”则是指引导个体实现职业生涯上的突破,在新时代背景下找到属于自己的成功路径[^3]。 ```python # 示例代码用于说明如何加载并初步探索DeepSeek模型 from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/Llama-2") model = AutoModelForCausalLM.from_pretrained("deepseek/Llama-2") text = "你好,世界" input_ids = tokenizer.encode(text, return_tensors="pt") output = model.generate(input_ids) print(tokenizer.decode(output[0], skip_special_tokens=True)) ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值