语言模型
yang_daxia
这个作者很懒,什么都没留下…
展开
-
CBHG 模块 来自TACOTRON: TOWARDS END-TO-END SPEECH SYNTHESIS
作者的灵感来源于在文章Fully Character-Level Neural Machine Translation without Explicit Segmentation中的模型。原型如下图所示:CBHG模块如下图所示。首次提出在Goggle的一篇文章:TACOTRON: TOWARDS END-TO-END SPEECH SYNTHESIS 回到CBHG模...原创 2018-11-09 14:42:25 · 4894 阅读 · 0 评论 -
神经网络语言模型在语音识别的应用论文整理
本人整理了NN语言模型在语音识别领域的应用论文。全部为2015年-2018年的会议论文。相关的期刊论文特别少,而且创新性没有会议高。论文几乎全部是语音类的最高级别会议ICASSP(B类)和Interspeech. 如果懒得自己下的话,可以留下邮箱,我会发给你。 2015_ICASSP_Long short-term memory language models with ...原创 2018-11-19 20:24:28 · 1068 阅读 · 22 评论 -
2018年语言模型用于改善语音识别的论文创新点总结
语音识别框架即声学模型加语言模型。 2018-icassp-ACCELERATING RECURRENT NEURAL NETWORK LANGUAGE MODEL BASED ONLINE SPEECH RECOGNITION SYSTEM提出一个用于在线语音识别的加速神经网络语言模型。首先介绍了一种具有过去历史信息的缓存语言模型,然后介绍了神经网络语言模型在CPU-GPU上的混合部...原创 2018-11-29 17:03:55 · 2344 阅读 · 1 评论 -
2017年语言模型用于改善语音识别的论文创新点总结
2017_ICASSP_ACTIVE LEARNING FOR LOW-RESOURCE SPEECH RECOGNITION- IMPACT OF SELECTION SIZE AND LANGUAGE MODELING DATA对于低资源的语音识别,作者研究了选择部分大小以及语言模型数据大小的影响。模型结构为声学模型,发音模型和语言模型。语言模型的数据越多,识别率越好。创新点并不高。启...原创 2018-12-02 17:32:44 · 1869 阅读 · 1 评论 -
2015-2016年语言模型用于改善语音识别的论文创新点总结
2016_ICASSP_Minimum word error training of long short-term memory recurrent neural network language models for speech recognition本文描述了在语音识别中的LSTM语言模型最小化词错误的训练。RNNLM一般通过最小化交叉熵训练去估计句子的概率值,这符合最大似然估计准则。...原创 2018-12-03 11:53:20 · 887 阅读 · 1 评论 -
Speech Decoding Using Lattice Rescoring
语音识别可以看成语音的解码过程。为了实现实时语音识别,可以采用lattice rescoring.语音识别框架包括声学模型,词典模型和语言模型。现在也可以通过加权有限状态转换器weighted finite-state transducer(WFST)构建语音识别框架。可以通过单次传输或者多次传输实现语音解码。lattice rescore是一种多次传输解码,先通过一个简单的低级知识进行首次传输解...原创 2018-12-04 10:49:18 · 1078 阅读 · 0 评论