文献阅读笔记
yang_daxia
这个作者很懒,什么都没留下…
展开
-
DETR疑问与理解
视频解读:【DETR 论文精读【论文精读】】 https://www.bilibili.com/video/BV1GB4y1X72R/?因为实际gt有m个框,objects query为N个,实际上N>>m。作者增加一个no object类别,就是N对N的二分图匹配问题了,使用匈牙利匹配算法求解。用Transformer做object detection:DETR - 小小理工男的文章 - 知乎。因为detr使用的transformer天然适合处理序列到序列到模式,所以就算一种端到端的检测。原创 2023-08-16 09:38:59 · 172 阅读 · 0 评论 -
AAAI2021论文
Distilling Localization for Self-Supervised Representation Learning探索了自监督表征学习中的目标定位问题。分类任务中,目不同目标具有相似的背景。作者使用显著性检测,提取前景信息,替换不同的背景做数据增强,提高了模型的表征能力。参考:https://mp.weixin.qq.com/s/UexYEkLYkn0pzSgteeD5sw...原创 2021-02-02 20:19:43 · 1297 阅读 · 2 评论 -
PlugNet: 文献阅读
motivation:ocr中很多文本分辨率很低,质量不好,较难识别。所以引入超分辨率的方法进行解决。一种是图片level的,先把图片变清晰,再把去识别。一种是feature level的,本文则基于feature level的本文提出的plugnet网络即基于特征level的。框架如下图所示。包括:矫正网络、特征提取网络、识别部分、超分单元1)矫正网络参考aster,自动得到20个关键点,然后使用tps插值对图像矫正。2)特征提取增加了一个特征融合,所以是992个chann原创 2020-11-17 15:28:09 · 845 阅读 · 0 评论 -
Dynamic Curriculum Learning for Imbalanced Data Classification ICCV_2019阅读笔记
为了解决不平衡的数据分类问题,作者设计了动态的课程学习。总的来说设计了两个课程。1)、采样程序从不平衡到平衡以及从简单到复杂。 2)、分类loss和度量学习loss的权重调整,开始阶段关注度量学习,后面关注分类。采样:初始状态:如三分类开始为1:100:50:20.不平衡,最终状态为平衡状态1:1:1:1,每一个轮次会对每一个类别做指数运算。每一个轮次的每一个batch都根据设置的程序:有一个target分布比例以及未重采样之前的分布current。如果target小于current原创 2020-10-28 22:06:46 · 279 阅读 · 0 评论 -
行人reid 综述 Deep Learning for Person Re-identification: A Survey and Outlook文献阅读
行人reid 综述摘要:作者将问题分为封闭场景的reid和开发场景的reid.封闭场景分三类问题:深度特征学习、度量学习、排序优化。开放场景分为5个方面。与此同时,昨天提出了一个新的评价指标mINP,以及一种新的baseline,AWG...原创 2020-10-20 19:52:06 · 498 阅读 · 0 评论 -
日常paper reading
"MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks"利用蒸馏方式提高resnet50的表现。蒸馏时采用多个教师网络集成的方式,只在最后的输出部分做蒸馏、使用教师模型的softlabel, 并且包含一个判别器判别是教师模型还是学生模型...原创 2020-09-21 13:19:03 · 309 阅读 · 0 评论 -
Knowledge Distillation: A Survey文献阅读
知识蒸馏用于压缩模型知识分为:基于响应、基于特征和基于关系。如下图:基于响应的产生softlabel。基于特征的可以学习特征图、激活图等。关系图为上述两种的混合。如两种特征图的关系(FSP)、多个老师模型构建关系图、数据的结构知识等。蒸馏方案:离线蒸馏、在线蒸馏、自我蒸馏。如下图离线蒸馏:先预训练教师模型、蒸馏时教师模型只复制产生知识。在现蒸馏:教师模型和学生模型同时训练。自我蒸馏:教师模型和学生模型使用同一个网络,所以可以看作一个特殊的在线蒸馏。可以自己的高级特原创 2020-08-10 14:27:52 · 1665 阅读 · 9 评论 -
ResNet与ResNeXt与SEnet
Resnet:残差连接增加网络的深度https://blog.csdn.net/Jing_xian/article/details/78878966ResNeXt:单路卷积变为多路平行卷积,优于更深的单路卷积看图:https://blog.csdn.net/u014380165/article/details/71667916SEnet:把重要通道的特征强化,非重...原创 2020-02-25 16:31:52 · 1640 阅读 · 0 评论 -
级联网络cascade-rcnn/HTC
1.CASCADE原创 2019-12-30 18:04:03 · 953 阅读 · 1 评论 -
Imbalance Problems in Object Detection:A review 文献阅读
9.3scale imbalance问题9.3.1高级特征不同层的特性1.抽象性:FPN中高层网络表征高一级特征, 低级网络表征低级特征。低级特征一般为边,轮廓,角点等,但是高级特征更抽象。2.粗粒度的。高级别的特征维度小,对应的边框数量少。所以是粗粒度的。3.基数(结果的子集)预测目标框的时候根据目标的scale,在对应的FPN层去预测。但是目标scale不平衡,会在训练中...原创 2019-12-17 21:45:07 · 498 阅读 · 0 评论 -
CVPR2018 Detecting and Recognizing Human-Object Interactions阅读笔记
1.Introduction本文不仅检测object, 还把object分为human和物体, 考虑任何物体的关联关系. 目的是学习一个三元组关系<human, action, object>2.method作者 在fast rcnn基础上扩展来个分支, 获得三元组的score, 该score由4部分组成:Sh,oa=sh⋅so⋅sha⋅gh,oa(1)S_{h, o}^...原创 2019-10-11 13:07:23 · 352 阅读 · 0 评论 -
cw2vec: Learning Chinese Word Embeddings with Stroke n-gram Information阅读笔记
作者提出了一种基于n元笔画的中文词嵌入,可以有效的刻画中文的语义特征以及形态学特征。相对于现存的word2Vec,Glove,CWE,JWE以及GWE,cw2vec在语义分析,文本分类,命名实体识别任务中表现更好。1.引言与onehot词表征不同,低维的词嵌入可以更好的刻画自然语言的语义特征,广泛应用于词性分类,命名实体识别,机器翻译等领域。现存的方法主要是词级别的基于上下文信息学习发词表...原创 2019-01-07 17:51:58 · 1525 阅读 · 2 评论 -
Exploring the limits of language model阅读笔记
IntroductionLM可以处理很多NLP任务如机器翻译, 语音识别, 文本总结,问答系统,视频生产等,理解语义, 不仅能够编码语法结构还能提取预料上下文信息。他可以帮助提高上述任务的表现,。N-元模型至今表现很好,但是RNN+N元表现更好,因为两者可以表达不通的语言结构。小语料库如PTB不会出现容易出现过拟合问题,大语料库不容易出现,但是比较难扩充数据集。现代GPU的发展以及网上...原创 2019-01-07 16:07:45 · 1499 阅读 · 13 评论 -
An Overview of multi-task learning阅读笔记
本文是香港科技大学的Yu Zhang和 杨强博士发表在Computer science上的一篇关于MTL的综述文章。摘要 多任务学习(MTL),通过提取各任务之间的相关信息可以提高性能表现。本文,作者第一次给出了多任务学习的定义,对多任务学习做一个综述。文中介绍了几种不同的MTL,每一组都介绍了相关的典型模型。包含多任务监督学习,多任务非监督学习,多任务半监督学习,多任务主动...原创 2018-12-19 23:31:40 · 1398 阅读 · 0 评论 -
A CONVERSATIONAL NEURAL LANGUAGE MODEL FOR SPEECH RECOGNITION IN DIGITAL ASSISTANTS文献阅读笔记
摘要:对话序列有利于提高数字助手(可以理解为手机的siri,微软小冰等)的能力,我们探索了神经网络语言模型模拟数字助手的对话。我们提出的结果可以有效刻画对话特征,在识别率上相对提高了%4。不想看细节的朋友可以直接看最后的创新点。1. 不同于其他领域的语音识别,数字助手主要为对话形式的。所以应该建立一个对话式的语言模型,用于解决语音识别中的歧义(ambiguous)问题。和前人一样...原创 2018-11-19 22:59:40 · 1701 阅读 · 0 评论