Waffles是一款跨平台的、基于命令行的机器学习开发包,包含了现有的主要机器学习算法,完全开源,用C++编写,使用方便。
该工具包的强大之处非常多,很重要的一个方面就是其在非监督学习方面的包罗万象,特别是降维算法,实现了PCA、isomap、LLE、manifold sculpting、breadth-first unfolding、neuro-PCA、cycle-cut、unsupervised backpropagation and temporal nonlinear dimensionality reduction等算法。
对于聚类算法,也很强大,包括了k-means、k-medoids、agglomerative clustering、related transduction algorithms including agglomerative transduction、max-flow/min-cut transduction等方法。
监督学习算法包括decision trees、multi-layer neural networks、k-nearest neighbor、naive bayes,甚至还有些不常用的算法,比如mean-margin trees。
相比另一个开源的机器学习开发包Weka,waffles在非监督学习算法上要强大的多(Weka只支持PCA),而在监督学习的算法上支持的较少(Weka有50多种分类算法)。
给出Waffles的网站,希望有需要的朋友在其中得到更多想要的东西http://waffles.sourceforge.net/