多方安全计算之Shamir的 (t,n)秘密共享方案

本文介绍了Shamir门限原理,这是一种基于拉格朗日插值法的安全数据共享方法。在(t, n)门限下,至少需要t个参与者共同参与才能恢复秘密,而少于t个则无法重构。内容涵盖了门限简介、简单的(t, n)门限解释、实现过程及其重要性质。" 127149207,10974913,朴素贝叶斯算法与naivebayes包的应用解析,"['算法', '机器学习', 'python', '数据分析']
摘要由CSDN通过智能技术生成

Shamir门限问题广泛的应用于多方安全计算中,这里简单的介绍一下Shamir门限的原理

Shamir门限是基于拉格朗日插值法的一种需要多个用户共同参与才能获取到秘密的一种方法

1. 门限简介
假设需要保护的数据为a0,并且要求:
(1)任意t个(或者更多的)分块可以很容易的重构出D;
(2)任意t-1个(或者更少的)分块都不可能重构出D。
该项技术可以被称为(t, n)门限。
2. 一个简单的(t, n)门限
该门限基于这样的事实:在一个二维坐标系中给定k个点(x1, y1), ..., (xk, yk),则满足q(xi)=yi的多项式有且仅有一个,且最高项系数为k-1。
不妨假设该多项式为q(x) = a[0] + a[1] * x + ... a[t-1] * x(t-1),且a0为需要保护的秘密。显然,只要给出任意t对(x, q(x))的值就可以计算出该多项式,从而得出D。
给定整数D,选择一个大于D和n的素数p,从[0, p)中选择ai,Di=Di mod p。
以下为该(k, n)门限一些有用的性质:
(1)任意分块的大小不会超过原始数据的大小;
(2)当t保持不变时,分块Di可以动态的加入或者删除,并且不会影响到其他分块;
(3)可以改变分块而不会影响到原始数据。
(4)可以根据重要性设置参与者掌握的分块数目。

3.实现过程

现有秘密a0,分享者D,参与者(P1,P2,P3ÿ

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值