题目还蛮好懂的,没有生僻的知识。如果是经常编程的童鞋,第一反应就是,这道题靠的是分析推理。
来个实例分析: abba
(1)划分
假设字符串长度为len , 划分方式有 1+(len-1) , 2+(len-2) , 3+(len-3) ....(len-1)+1 , 对于abba , 有 a+bba , ab+ba , abb+a三种;
(2)组合(先不去除重复出现的情况)
任何一种划分方式,对于subtrain1,它可以颠倒,也可以不颠倒,对于subtrain2,也是可以颠倒,可以不颠倒,之后,组装顺序可以是 subtrain1+subtrain2 , 也可以是subtrain2+subtrain1 ,所以,对于每一种划分方式,最多有 8 种不同的组装方式。
对于 a+bba : a+bba , a+abb , bba+a , bba+a
对于 ab+ba : ab+ba , ab+ab , ba+ba , ba+ab , ba+ab , ab+ab , ba+ba , ab+ba
对于 abb+a : abb+a , bba+a , a+abb , a+bba
去除重复之后,就是6种。
到了这一步,我们有两种方法,1.模拟,把所有可能的字符串都求出来,再去重 2.推导,用数学方法直接求解。
如果采用第一种方法,先确定方案是否可行。对于长度为72的输入字符串,最多有 71*8=568种输出,可以接受。因此,接下来用第一种方法。由于要去重,因此联想到集合的三个性质:确定性,互异性,无序性,OK,就是STL SET了。
上代码
#include<set>
#include<string>
#include<iostream>
using namespace std;
/*
* 功能:反转字符串
* 输入:s:待反转字符串
* 输出:原地反转的字符串
*/
void reverse( string & s )
{
char t ;
int len = s.length();
for(int i =0;i < len/2 ;i++)
{
// swap
t = s[i] ;
s[i] = s[len-1-i];
s[len-1-i] = t;
}
}
/*
* 功 能:输入一个字符串,输出所有可能的最终组合字符串
* 输 入:s : 字符串
* 输 出:int:所有可能的组合字符串的数目
* 思 路:采用set数据结构,模拟整个过程
*/
int Process( const string s )
{
// Data structure
set <string> S;
string subtrain1 , subtrain2 ;
string tmp ;
// 第一步,划分字符串
int len = s.length();
for(int i=0 ; i <= len-2 ; i++)
{
subtrain1 = s.substr( 0 , i+1 );
subtrain2 = s.substr( i+1 , len-i-1 );
// 存储subtrain1 subtrain2的原始值,防止在处理过程中篡改
string subtrain1_original = subtrain1;
string subtrain2_original = subtrain2;
/* 第二步,不同的组合方式 */
// subtrain1 不反转 , subtrain2 不反转
tmp = subtrain1 + subtrain2 ;
S.insert( tmp );
tmp = subtrain2 + subtrain1 ;
S.insert( tmp );
// subtrain1 反转 , subtrain2 不反转
subtrain1 = subtrain1_original ;
subtrain2 = subtrain2_original ;
reverse( subtrain1 );
tmp = subtrain1 + subtrain2 ;
S.insert( tmp );
tmp = subtrain2 + subtrain1 ;
S.insert( tmp );
// subtrain1 不反转 , subtrain2 反转
subtrain1 = subtrain1_original ;
subtrain2 = subtrain2_original ;
reverse( subtrain2 );
tmp = subtrain1 + subtrain2 ;
S.insert( tmp );
tmp = subtrain2 + subtrain1 ;
S.insert( tmp );
// subtrain1 反转 , subtrain2 反转
subtrain1 = subtrain1_original ;
subtrain2 = subtrain2_original ;
reverse( subtrain2 );
reverse( subtrain1 );
tmp = subtrain1 + subtrain2 ;
S.insert( tmp );
tmp = subtrain2 + subtrain1 ;
S.insert( tmp );
}
// 输出
return S.size();
}
int main()
{
int Case ;
string input ;
cin>>Case;
while( Case-- )
{
cin>> input ;
int rs = Process( input );
printf("%d\n",rs );
}
return 0;
}
居然是TLE。。。
这说明,即便使用了传说中的set (底层是一棵红黑树,插入需要O(log(n))),仍然太慢了。出于速度考虑,我祭出了Hash。
(1)设计Hash函数
Hash = ∑( s[i] * (i+1) ) , i=0,1,....(length-1)
(2)解决冲突
拉链法
Hash版 代码: Accepted
#include<string>
#include<iostream>
using namespace std;
/* Node 定义,用于拉链法 */
struct Node
{
string data ;
Node * next ;
};
int Num_nodes ; // Node数目,作为最终输出
int const MAXN = 1000; // Hash表的大小
Node * Hash[MAXN] ={NULL}; // Hash 表
/*
* 功能:将一个字符串s插入Hash表
* 输入:s:待插入字符串
* 输出:无
*/
void InsertHash( string s )
{
// 第一步,计算 Hash key
int len = s.length();
int key = 0 ; // hash key
for( int i = 0 ; i < len ; i++)
{
key += s[i] * (i+1) ;
}
// 第二步,确定插入位置
int loc = key % MAXN ;
Node * p = Hash[ loc ] ;
Node * q ; // 临时使用的指针
q = NULL ;
if( NULL == p ) // 直接插入
{
q = new Node ;
q->data = s ;
q->next = NULL ;
Hash[ loc ] = q ;
// 同时,Num_nodes加一
Num_nodes++;
}
else // 需要判断该字符串s是否已经存在
{
// 遍历该链表,以查看s是否存在
while( p != NULL )
{
// 已经存在,直接返回
if( p->data == s )
return;
q = p ;
p = p->next;
}
// s不存在于该条链表中
q->next = new Node;
q->next->data = s;
q->next->next = NULL;
// 同时,Num_nodes++
Num_nodes++;
}
}
/*
* 功能:重置Hash表
* 输入:无
* 输出:无
* 说明:为了防止内存泄漏,手动地清理所有内存
*/
void ResetHash()
{
Node * p , * q ; // 临时使用
p = q = NULL;
Num_nodes = 0; // 清零
for( int i = 0 ; i < MAXN ; i++ )
{
p = Hash[ i ] ;
if( NULL == p )
continue;
while( p != NULL )
{
q = p->next ;
// 释放内存
free( p );
p = q;
}
Hash[i] = NULL; // 重置Hash表
}
}
/*
* 功能:反转字符串
* 输入:s:待反转字符串
* 输出:原地反转的字符串
*/
void reverse( string & s )
{
char t ;
int len = s.length();
for(int i =0;i < len/2 ;i++)
{
// swap
t = s[i] ;
s[i] = s[len-1-i];
s[len-1-i] = t;
}
}
/*
* 功 能:输入一个字符串,输出所有可能的最终组合字符串
* 输 入:s : 字符串
* 输 出:int:所有可能的组合字符串的数目
* 思 路:采用set数据结构,模拟整个过程
*/
int Process( const string s )
{
// Data structure
string subtrain1 , subtrain2 ;
string tmp ;
// 第一步,划分字符串
int len = s.length();
for(int i=0 ; i <= len-2 ; i++)
{
subtrain1 = s.substr( 0 , i+1 );
subtrain2 = s.substr( i+1 , len-i-1 );
// strore original value , avoid change of value
string subtrain1_original = subtrain1;
string subtrain2_original = subtrain2;
/* 第二步,不同的组合方式 */
// subtrain1 不反转 , subtrain2 不反转
tmp = subtrain1 + subtrain2 ;
InsertHash( tmp );
tmp = subtrain2 + subtrain1 ;
InsertHash( tmp );
// subtrain1 反转 , subtrain2 不反转
subtrain1 = subtrain1_original ;
subtrain2 = subtrain2_original ;
reverse( subtrain1 );
tmp = subtrain1 + subtrain2 ;
InsertHash( tmp );
tmp = subtrain2 + subtrain1 ;
InsertHash( tmp );
// subtrain1 不反转 , subtrain2 反转
subtrain1 = subtrain1_original ;
subtrain2 = subtrain2_original ;
reverse( subtrain2 );
tmp = subtrain1 + subtrain2 ;
InsertHash( tmp );
tmp = subtrain2 + subtrain1 ;
InsertHash( tmp );
// subtrain1 反转 , subtrain2 反转
subtrain1 = subtrain1_original ;
subtrain2 = subtrain2_original ;
reverse( subtrain2 );
reverse( subtrain1 );
tmp = subtrain1 + subtrain2 ;
InsertHash( tmp );
tmp = subtrain2 + subtrain1 ;
InsertHash( tmp );
}
// 输出
return Num_nodes;
}
int main()
{
int Case ;
string input ;
cin>>Case;
while( Case-- )
{
cin>> input ;
int rs = Process( input );
printf("%d\n",rs );
// 重置Hash
ResetHash();
}
return 0;
}