1、ROC(Receiver Operating Characteristic)
ROC(Receiver Operating Characteristic)曲线是一种用于评估分类模型性能的工具。它通过绘制真阳性率(True Positive Rate, TPR)与假阳性率(False Positive Rate, FPR)之间的关系来展示模型的分类能力。ROC 曲线下的面积(AUC, Area Under the Curve)通常用于量化模型的性能。
如何绘制 ROC 曲线
在 Python 中,你可以使用 scikit-learn
库来绘制 ROC 曲线。以下是一个简单的示例:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
# 生成一个示例数据集
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_si