ROC、TPR、FPR的含义

1、ROC(Receiver Operating Characteristic)
 

ROC(Receiver Operating Characteristic)曲线是一种用于评估分类模型性能的工具。它通过绘制真阳性率(True Positive Rate, TPR)与假阳性率(False Positive Rate, FPR)之间的关系来展示模型的分类能力。ROC 曲线下的面积(AUC, Area Under the Curve)通常用于量化模型的性能。

如何绘制 ROC 曲线

在 Python 中,你可以使用 scikit-learn 库来绘制 ROC 曲线。以下是一个简单的示例:

 

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification


# 生成一个示例数据集
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_si
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曙光_deeplove

你的鼓励是我努力的最大源泉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值