c+初中数学----三车汇合问题

博客围绕甲、乙、丙三辆车在A、B两点间往返汇合问题展开。先给出数学解法,通过设未知数列出方程求解第三次汇合时间。接着介绍编程解法,包括破解方程和程序模拟两种方式,执行程序不仅能快速求解多次汇合问题,还发现丙车每行驶30小时会与其他两车相遇。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题:

       甲、乙、丙三辆车均在A、B两点间往返,三辆车在A、B两点间往返一次所需时间分别为5小时、3小时、2小时。现在三辆车同时在A点视为第一次汇合,甲车先出发,1小时候乙车出发,再经过2小时候丙车出发。那么,丙车出发()小时后,三辆车第三次同时汇合A地。

数学解:

      1.设甲车经过x次往返、乙车经过y次往返、丙车经过z次往返后相遇。
         5x = 3y+1 = 2z + 3
      2.由于2z + 3必然得到一个奇数,那么5x和3y+1也必然是一个奇数。
      3.我们就假设x={1、3、5、7、9、…}依次带入方程。

      当x=5时,解得y=8、z=11,但这是第二次相遇。
      当x=11时,解得y=18、z=26,这就是第三次相遇,也就是当z往返26次后,三两车第三车汇合在A地,用时26*2=52小时。

      那么,我要是问,丙车出发()小时后,三辆车第200次同时汇合A地。怎么算呢?你同样可以将N多奇数带入方程求解,但是估计要算上几个小时,如果用编程解决,几分钟就可以完成,不仅可以求出200次汇合,20000次都可以很快求出来,而且,还能发现一个隐藏属性!下面请看编程解!

编程解-破解方程:

     根据数学解的过程,我们得知x、y、z的解的范围是奇数,那么,我们可以写一个程序,自动尝试所有的可能性,也就是说,在x=1时,尝试将y=3,z=5带入方程能否得解,如果不能,在尝试x=3时,将y=5,z=11带入方程能否得解。
     就不必尝试x=1、y=1、z=1这种可能性了,浪费计算时间。
     好,开始破解方程式 5x = 3y+1 = 2z+3

	/**定义变量**/
	int x, y, z;	
	int loop = 1;	//用来记录相遇次数的变量,默认等于1,因为题目明确了现在三辆车同时在A点
	int number = 9999;	//这个变量表示奇数的最大值,也就是说我们要尝试1-9999这个范围内的所有奇数
	
	/**循环语句**/
	for(x=1; x<=number; x++)	//x从1开始,小于等于number就循环,每次循环x+1
	{
		int a = 5*x;	//计算5x的积存入变量a中
		if(a % 2 == 0)	//判断a是否是奇数
			continue;	//如果是奇数,不执行下面的代码,进行下一次循环
		for(y=x; y<=number; y++)//y从x开始,小于等于number就循环,每次循环y+1
		{
			int b = 3*y+1;
			if(b % 2 == 0)
				continue;
			if(a == b)	//如果a 与 b 相等,表示5x = 3y+1等式成立,继续向下执行
			{
				for(z=y; z<=number; z++)//z从y开始,小于等于number就循环,每次循环z+1
				{
					int c = 2*z+3;
					if(c % 2 == 0)
						continue;
					if(b == c)	//如果b与c相等,表示5x = 3y+1 = 2z+3,三辆车汇合
					{
						//相遇次数+1
						loop++;
						//打印结果
						printf("第%d次汇合于起点, 甲%d次往返,乙%d次往返,丙%d次往返,丙共用时%d小时\n",loop, x,y,z,z*2);
					}
				}
			}
			
		}
	}

执行程序得到结果:

在这里插入图片描述
在这里插入图片描述
      我们尝试了1-9999范围内的所有奇数,得到了667次汇合的数据,如果想要更多,只需要修改number的值让它更大就可以了。
      同时,我们发现了一个很有意思的事情,在拥有了大数据的条件下,我们很容易就能用肉眼分辨出每行数据间的关系,甲每行数据会递增6,乙每行数据会递增10,丙每行数据会递增15,丙每行驶30个小时就会与其他两辆车相遇!!!

编程解-程序模拟:

      我们换一种编程的实现方式,用编程模拟三辆车在不断的行驶,判断他们什么时候在A点(起点)相遇。


	/**定义变量**/
	int p1 = 3;			//表示甲已经走了3小时;
	int p2 = 2;			//表示乙已经走了2小时;
	int p3 = 0;			//表示丙刚要开始走;
	int p1_count = 3;	//记录甲走的总小时数;
	int p2_count = 2;	//记录乙走的总小时数;
	int p3_count = 0;	//记录丙走的总小时数;
	int loop = 1;		//记录相遇次数的变量,默认等于1,因为题目明确了现在三辆车同时在A点

	/**循环开始**/
	while(loop < 200)	//如果相遇200次以内,循环继续,超过200次循环退出
	{
		//每次循环三辆车行驶的小时数+1;
		p1++;			
		p2++;
		p3++;
		p1_count++;
		p2_count++;
		p3_count++;

		if(p1 == 5)	//当甲走了5个小时后,表示回到了A点,开始下一次从0-5个小时的路程
		{
			p1 = 0;
		}
		if(p2 == 3)	//当乙走了3个小时后,表示回到了A点,开始下一次从0-3个小时的路程
		{
			p2 = 0;
		}
		if(p3 == 2)	//当丙走了2个小时后,表示回到了A点,开始下一次从0-2个小时的路程
		{
			p3 = 0;
		}

		if(p1 == 0 && p2 == 0 && p3 == 0)//当甲、乙、丙、都被设置成0时,表示三辆车汇合于起点了
		{
			loop++;
			printf("第%d次汇合于起点, 甲行驶了%d小时, 乙行驶了%d小时, 丙行驶了%d小时\n",loop, p1_count,p2_count,p3_count);
		}
	}

执行程序得到结果:

在这里插入图片描述

对比两个程序得到的结果,得到的结果是一致的。

内容概要:本文详细分析了全球及中国财富管理市场的发展现状与未来趋势。全球财富管理市场起源于欧洲、发展于美国,美国财富管理市场经过百年发展,形成了以商业银行、综合财富管理平台和投资服务平台为代表的类财富管理体系。中国财富管理市场正处于快速发展期,居民财富快速增长并向金融资产倾斜,资管新规引导市场健康发展。文中还探讨了中国财富管理市场的竞争格局,包括私人银行、银行理财、公募基金、券商资管、信托、第方财富管理机构和互联网财富管理平台的发展情况。此外,公募基金投顾试点成为财富管理市场转型的重要探索,买方投顾模式逐步取代卖方投顾模式,AI赋能投顾业务,为行业发展带来新机遇。 适合人群:对财富管理行业感兴趣的投资者、金融从业者及研究机构。 使用场景及目标:①了解全球及中国财富管理市场的发展历程与现状;②掌握中国财富管理市场竞争格局及各机构的发展特点;③探索公募基金投顾试点对财富管理市场的转型意义及AI赋能投顾业务的应用前景。 阅读建议:本文内容详实,涵盖了财富管理市场的多个方面,建议读者重点关注中国财富管理市场的现状与发展趋势,特别是私人银行、银行理财、公募基金、券商资管等机构的具体发展情况,以及公募基金投顾试点和AI赋能投顾业务的创新模式。
6.0版更新说明: 1.根据2024年鉴整理,数据更新至2023年 2.新增指标,当前214个指标 5.0版更新说明: 数据更新至2022年 4.2版更新说明: 1.更新2021年部分指标数据 4.0版更新说明: 1.数据更新至2021年 2.调整部分旧指标 3.新增指标,当前190个指标 3.0版更新说明: 1.数据更新至2020年 2.调整部分指标,当前174个指标 2.4版更新说明: 1.更新部分缺失值 2.将数据转为平衡面板 3.填补升级。内含原始版本、线性插值、ARIMA填补个版本数据 一、数据介绍 数据名称:中国城市数据库 数据来源:中国城市统计年鉴1991-2024年、地方统计局 数据年份:1990-2023年 数据范围:300个地级市(包括直辖市) 样本数量:平衡面板10200条(300*34=10200) 更新时:2025年2月,当前最新6.0版 二、整理方法 第一,识别年鉴。利用NLP算法识别《中国城市统计年鉴》,并转为面板数据 第二,完善数据。对比主流数据库、地方统计局,进一步完善城市数据 第,统一地区。匹配民政部编码,统一使用2019年编码和地区名称 第四,统一单位。对不同单位的情况,进行单位换算 第五,人工验证。得到所有指标的面板数据,并人工抽样验证 第六,平衡面板。将非平衡面板转为平衡面板数据 第七,线性插值。利用线性趋势对中缺失进行填充,得到线性插值版 第八,ARIMA填补。利用时趋势,对剩余缺失进行预测,得到ARIMA填补版 最终,保留原始版本、线性插值版、ARIMA填补版
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值