一、引言
在实际工作中,也可对已有微服务进行升级重构,解决历史遗留问题。升级重构,是后台架构演化与能力增强的利器。接下来我们将深入了解如何实现对用户无感知、低 Bug 的升级重构方案。
二、重构常见形式
2.1 纯代码式升级
仅针对业务代码层面的遗留问题(如慢 SQL、日志打印方式错误、未显式开启事务等)进行修复。将历史版本称为 V1,修复后为 V2。纯代码重构架构如下:
纯代码重构升级对比图(V1 → V2)
修复范围仅限于代码,无需变动存储层,流程简单快捷。
2.2 含存储式升级
在纯代码之外,还要升级存储层,分为两种:
-
存储类型升级:如将读操作由数据库切换到缓存,提升读性能一个量级以上。
数据库读写 → 写库+读缓存 的架构对比图
-
同类型存储结构升级:将单表宽表拆分成更合理的多表结构,消除冗余,应对业务演进需求。
- 宽表 → 新表结构 的架构对比图
三、纯代码重构切换策略
- 全量替换:测试通过后直接上线 V2,回滚简单粗暴,但风险大,影响面全量用户。
- 灰度发布:先上线部分实例,如 10/100 台,观察 10% 流量后无问题再逐步扩容,缩小潜在影响面。
四、含存储重构切换架构
4.1 架构总览
不停服切换架构示意图
左侧为老版本服务 + 老存储,右侧为新版本服务 + 新存储(缓存或新表)。底层数据同步模块负责历史与实时写入同步,最上层进行灰度用户切换。
4.2 数据同步
- 全量历史同步:使用 Worker 批量扫描老库,限定截止 ID,同步至新存储。
- 增量实时同步:前置订阅 Binlog,实时捕获
insert
、update
、delete
,保证全量期间无漏写。
全量与增量同步架构示意图
4.3 数据对比验证
借助架构思维:构建高并发读服务_基于流量回放实现读服务的自动化测试回归方案
,录制老服务流量在新版本上回放比对。针对微小 Binlog 延迟导致的误差,可等待数分钟重试。
自动化数据对比验证架构图
4.4 用户灰度切换
- 用户分批:依据注册时间、会员级别、订单量、订单金额等维度分组,优先低影响用户。
- 场景覆盖优先:对每批用户再按活跃功能点使用度排序,功能点多者优先上线,尽早发现问题。
- 灰度策略:逐步放量,从小到大,从低危到高危用户,配合实时监控与告警。
小结
我们梳理了纯代码式与含存储式两类重构升级形式,以及相应的低风险切换方案。含存储重构中涵盖了 Binlog 同步、流量回放自动化回归,展现了技术方案的体系化和互联性。