1,Neural Network
这里显示的是输入大小,中间层数量以及每层的神经元个数。
2,Algorithms (括号中的灰色字体都是链接,可以查看)
Training:RProp。这表示学习训练函数。
Performance:Mean Squared Error。这表示性能用均方误差来表示。
Calculations: MEX。暂时没发现用处。
3,Progress
Epoch:迭代次数。
Time:运行时间。
Performance:训练数据集的性能。
Gradient:梯度。
4,Plots (3个都可以点进去,会有相应的图出来)
Performance:通过均方差开衡量网络的性能,可以看出,迭代次数越多,性能越好。
Training tate:记录Gradient和Validation Checks,训练状态的跟踪
Regression:通过绘制回归线来测量神经网络对应数据的拟合程度。