算法导论 — 8.1 排序算法的下界

笔记

我们所熟知的插入排序、归并排序、快速排序等排序算法,它们的排序过程都依赖于比较元素间的大小,我们称这些算法为比较排序。本节讨论比较排序算法的运行时间的下界。
  给定一个输入序列 < a 1 , a 2 , … , a n > <a_1, a_2, …,a_n> <a1,a2,,an>。为简化分析,假定所有输入元素都是互异的。
  比较排序可以抽象为一棵决策树。下图决策树展示了插入排序算法作用于包含3个元素的输入序列的情况。决策树是一棵完全二叉树。每个非叶结点都以 i : j i : j i:j标记,表示一对元素 a i a_i ai a j a_j aj的比较过程。插入排序从根结点开始,根据结点的比较结果,逐层向下走。在一个非叶结点,如果比较之后确定两个元素的大小关系为 a i ≤ a j a_i ≤ a_j aiaj,那么进入左子树;如果比较之后确定两个元素的大小关系为 a i > a j a_i > a_j ai>aj,那么进入右子树。当到达一个叶结点时,表示已经排好序。每一个叶结点都表示一个可能的排好序的序列。
  在这里插入图片描述
  对于一个有 n n n个元素的序列来说,可能的排好序的序列一共有 n ! n! n!种,对应的决策树就有 n ! n! n!个叶结点。一个排序过程的运行时间取决于它所包含的比较次数。对于一个确定的排序过程,比较次数等于从决策树的根结点到一个叶结点的路径长度。因此,一个排序算法的最坏情况比较次数等于其决策树的高度,即从根结点到最低层次叶结点的路径长度。
  考虑一棵高度为 h h h、具有 l l l个叶结点的决策树,它对应一个有 n n n个输入元素的排序算法。因为输入数据的 n ! n! n!种可能的排列都是叶结点,所以有 n ! ≤ l n! ≤ l n!l。由于在一棵高度为 h h h的二叉树中,叶结点的数目最多为 2 h 2^h 2h个,因此有 n ! ≤ l ≤ 2 h n! ≤ l ≤ 2^h n!l2h。对该式取对数,得到 h ≥ l g ( n ! ) = Ω ( n l g n ) h ≥ {\rm lg}(n!) = Ω(n{\rm lg}n) hlg(n!)=Ω(nlgn)。于是可以得到,在最坏情况下,任何比较排序算法都至少需要做 Ω ( n l g n ) Ω(n{\rm lg}n) Ω(nlgn)次比较。

练习

8.1-1 在一棵比较排序算法的决策树中,一个叶结点可能的最小深度是多少?
  
  
8.1-2 不用斯特林近似公式,给出 l g ( n ! ) {\rm lg}(n!) lg(n!)的渐近紧确界。利用A.2节中介绍的技术来累加和 ∑ k = 1 n l g k \sum_{k=1}^{n}{\rm lg}k k=1nlgk
  
   l g k {\rm lg}k lgk为单调递增函数,根据A.2节结论,可以通过积分近似方法来累加和 ∑ k = 1 n l g k \sum_{k=1}^n{\rm lg}k k=1nlgk的渐近紧确界。
   ∑ k = 1 n l g k = l g 1 + ∑ k = 2 n l g k = ∑ k = 2 n l g k ≥ ∫ 1 n ( l g k ) d k = n l g n − ( n − 1 ) l n 2 \sum_{k=1}^n{\rm lg}k={\rm lg}1+\sum_{k=2}^n{\rm lg}k=\sum_{k=2}^n{\rm lg}k≥∫_1^n({\rm lg}k)dk=n{\rm lg}n-\frac{(n-1)}{{\rm ln}2} k=1nlgk=lg1+k=2nlgk=k=2nlgk1n(lgk)dk=nlgnln2(n1)
  由上式可以得到, ∑ k = 1 n l g k = Ω ( n l g n ) \sum_{k=1}^n{\rm lg}k=Ω(n{\rm lg}n) k=1nlgk=Ω(nlgn)成立。
  
8.1-3 证明:对 n ! n! n!种长度为 n n n的输入中的至少一半,不存在能达到线性运行时间的比较排序算法。如果只要求对 1 / n 1/n 1/n的输入达到线性时间呢? 1 / 2 n 1/2^n 1/2n呢?
  
  一棵高度为 h h h的决策树最多有 2 h 2^h 2h个叶结点。
  对于一个含 n n n个元素的序列,如果可能的排列一共有 n ! / 2 n!/2 n!/2种,那么其决策树的叶结点数目满足 2 h ≥ n ! / 2 2^h ≥ n!/2 2hn!/2。可以得到 h ≥ l g ( n ! ) − 1 = Ω ( n l g n ) h ≥ {\rm lg}(n!) − 1 = Ω(n{\rm lg}n) hlg(n!)1=Ω(nlgn)。因此对于至少 n ! / 2 n!/2 n!/2种可能的排列,比较排序算法也不能达到线性运行时间。
  如果可能的排列一共有 n ! / n n!/n n!/n种,,那么其决策树的叶结点数目满足 2 h ≥ n ! / n 2^h ≥ n!/n 2hn!/n。可以得到 h ≥ l g ( n ! ) − l g n = Ω ( n l g n ) h ≥ {\rm lg}(n!) − {\rm lg}n = Ω(n{\rm lg}n) hlg(n!)lgn=Ω(nlgn)。这种情况下,比较排序算法也不能达到线性运行时间。
  如果可能的排列一共有 n ! / 2 n n!/2^n n!/2n种,,那么其决策树的叶结点数目满足 2 h ≥ n ! / 2 n 2^h ≥ n!/2^n 2hn!/2n。可以得到 h ≥ l g ( n ! ) − n = Ω ( n l g n ) h ≥ {\rm lg}(n!) − n = Ω(n{\rm lg}n) hlg(n!)n=Ω(nlgn)。这种情况下,比较排序算法也不能达到线性运行时间。

8.1-4 假设现有一个包含 n n n个元素的待排序序列。该序列由 n / k n/k n/k个子序列组成,每个子序列包含 k k k个元素。一个给定子序列中的每个元素都小于其后继子序列中的所有元素,且大于其前驱子序列中的每个元素。因此,对于这个长度为 n n n的序列的排序转化为对 n / k n/k n/k个子序列中的 k k k个元素的排序。试证明:这个排序问题中所需比较次数的下界是 Ω ( n l g k ) Ω(n{\rm lg}k) Ω(nlgk)。(提示:简单地将每个子序列的下界进行合并是不严谨的。)
  
  正如提示所言,我们不能简单将每个子序列的下界进行合并。因为这种做法引入了一个前提,那就是我们采用的排序算法必须是独立地对每个子序列进行排序的,元素间的比较仅限于各子序列内部。而对于那些存在跨子序列比较的排序算法,这一做法并没有考虑进来。因此这一做法是不严谨的。
  我们还是需要将整个序列当做一个整体来考察。每个子序列都有 k ! k! k!种可能的排列,一共有 n / k n/k n/k个子序列,那么整个序列一共有 ( k ! ) n / k (k!)^{n/k} (k!)n/k种可能的排列。假定针对该序列的排序算法的决策树的高度为 h h h,那么满足 2 h ≥ ( k ! ) n / k 2^h ≥(k!)^{n/k} 2h(k!)n/k,两边取对数可得到
   h ≥ l g [ ( k ! ) n ⁄ k ] = n k l g ( k ! ) = Ω ( n l g k ) h≥{\rm lg}[(k!)^{n⁄k} ]=\frac{n}{k}{\rm lg}(k!)=Ω(n{\rm lg}k) hlg[(k!)nk]=knlg(k!)=Ω(nlgk)

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值